|
|
|
|
|
|
Quantitative Analysis of Solution Cathode Glow Discharge-Atomic Emission Spectroscopy Coupled with Internal Standard Method |
ZHENG Pei-chao, TANG Peng-fei, WANG Jin-mei*, YANG Rui |
College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China |
|
|
Abstract Solution Cathode Glow Discharge-Atomic Emission Spectrometry is a novel, rapid, high efficient and real-time online element analysis method, which can be applied for metal elements detection in water. In this paper, the internal standard method was employed to improve its accuracy and stability. The standard calibration curve of potassium and the internal standard calibration curve of potassium were established using Hβ as internal standard elements, and the relative error and relative standard deviation of the sample measured by internal standard method were 1.11% and 2.14%, respectively. Compared with the standard curve method, the accuracy and stability were improved by internal standard method. Variations of spectral line intensity at the same periods were investigated, showing the spectral line intensity variations of potassium and Hβ were not quite the same, but the spectral line intensity variations of potassium and rubidium, calcium and magnesium in the same main group had the same variable trends, thus, we proposed that the elements which had the same variable trends of spectral line intensity and main group with the determined metal elements could be selected as the internal standard element to have a greater correction for metal elements detection in water using solution cathode glow discharge-atomic emission spectrometry. The accuracies and stabilities of internal standard method when rubidium, magnesium and calcium were used as internal standard elements for potassium, calcium and magnesium were discussed and the relative errors were 0.49%, 0.02% and 0.30% respectively, and the relative standard deviations were 1.11%, 1.13% and 0.87%, respectively, which is better than the standard curve method and the internal standard method using Hβ as the internal standard element. The relative error and relative standard deviation of the calcium and magnesium in tap water were also measured, which showed that the relative error and relative standard deviation were 0.58%, 1.03% and 1.57%, 1.10%, respectively, when magnesium and calcium were used as the internal standard spectral elements respectively. The results show that the internal standard method is a useful method to eliminate the influence of experimental fluctuations, which improves the accuracy and stability when solution cathode glow discharge-atomic emission spectrometry is applied for metal elements detection in water.
|
Received: 2016-09-07
Accepted: 2017-01-10
|
|
Corresponding Authors:
WANG Jin-mei
E-mail: wangjm@cqupt.edu.cn
|
|
[1] Shaverina A V, Tsygankova A R, Saprykin A I. Journal of Analytical Chemistry, 2015, 70(1): 28.
[2] Jackson B, Liba A, Nelson J. Journal of Analytical Atomic Spectrometry, 2014, 2015(5): 1179.
[3] Shamsipur M, Fattahi N, Assadi Y, et al. Talanta, 2014, 130(6): 26.
[4] Shekhar R. Talanta, 2012, 93(93): 32.
[5] Manjusha R, Reddy M A, Shekhar R, et al. Journal of Analytical Atomic Spectrometry, 2013, 28(12): 1932.
[6] Quarles C D, Manard B T, Burdette C Q, et al. Microchemical Journal, 2012, 105(11): 48.
[7] Zhang L X, Marcus R K. Journal of Analytical Atomic Spectrometry, 2015, 31(1): 1396.
[8] Wang Z, Gai R, Zhou L, et al. Journal of Analytical Atomic Spectrometry, 2014, 29(11): 2042.
[9] Doroski T A, King A M, Fritz M P, et al. Journal of Analytical Atomic Spectrometry, 2013, 28(7): 1090.
[10] Shekhar R, Madhavi K, Meeravali N N, et al. Analytical Methods, 2014, 6(3): 732.
[11] Shekhar R, Karunasagar D, Dash K, et al. Journal of Analytical Atomic Spectrometry, 2010, 25(6): 875.
[12] ZHENG Pei-chao, ZHANG Bin, WANG Jin-mei, et al(郑培超, 张 斌, 王金梅, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2015,35(7): 2012.
[13] Zheng P, Chen Y, Wang J, et al. Journal of Analytical Atomic Spectrometry, 2016, 31(10): 2037. |
[1] |
WANG Gan-lin1, LIU Qian1, LI Ding-ming1, YANG Su-liang1*, TIAN Guo-xin1, 2*. Quantitative Analysis of NO-3,SO2-4,ClO-4 With Water as Internal Standard by Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1855-1861. |
[2] |
YU Zhi-rong, HONG Ming-jian*. Near-Infrared Spectral Quantitative Analysis Network Based on Grouped Fully Connection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1735-1740. |
[3] |
ZHOU Jun1, 2, YANG Yang2, YAO Yao2, LI Zi-wen3, WANG Jian3, HOU Chang-jun1*. Application of Mid-Infrared Spectroscopy in the Analysis of Key Indexes of Strong Flavour Chinese Spirits Base Liquor[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 764-768. |
[4] |
LI Yuan1, 2, SHI Yao2*, LI Shao-yuan1*, HE Ming-xing3, ZHANG Chen-mu2, LI Qiang2, LI Hui-quan2, 4. Accurate Quantitative Analysis of Valuable Components in Zinc Leaching Residue Based on XRF and RBF Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 490-497. |
[5] |
FU Juan, MO Jia-mei, YU Yi-song, ZHANG Qing-zong, CHEN Xiao-li, CHEN Pei-li, ZHANG Shao-hong, SU Qiu-cheng*. Experimental Study on the Structure Characteristics of CO2 in Gas Hydrate by Solid-State Nuclear Magnetic Resonance and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 464-469. |
[6] |
YU Feng-ping1, LIN Jing-jun1*, LIN Xiao-mei1, 3*, LI Lei1,2*. Detection of C Element in Alloy Steel by Double Pulse Laser Induced Breakdown Spectroscopy With a Multivariable GA-BP-ANN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 197-202. |
[7] |
ZHENG Pei-chao, LUO Yuan-jiang, WANG Jin-mei*, HU Qiang, YANG Yang, MAO Xue-feng, LAI Chun-hong, FENG Chu-hui, HE Yu-tong. Determination of Strontium in Strontium-Rich Mineral Water Using Solution Cathode Glow Discharge-Atomic Emission Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 272-276. |
[8] |
WANG Xiao-bin1, 2, 3, ZHANG Xi1, GUAN Chen-zhi1, HONG Hua-xiu1, HUANG Shuang-gen2*, ZHAO Chun-jiang3. Quantitative Detection of Ascorbic Acid Additive in Flour Based on Raman Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3765-3770. |
[9] |
LIU Jia-cheng1, 2, HU Bing-liang1, YU Tao1*, WANG Xue-ji1, DU Jian1, LIU Hong1, LIU Xiao1, HUANG Qi-xing3. Nonlinear Full-Spectrum Quantitative Analysis Algorithm of Complex Water Based on IERT[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3922-3930. |
[10] |
LIN Xiao-mei1, WANG Xiao-meng1, HUANG Yu-tao1*, LIN Jing-jun2*. PSO-LSSVM Improves the Accuracy of LIBS Quantitative Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3583-3587. |
[11] |
YOU Wen1, XIA Yang-peng1, HUANG Yu-tao1, LIN Jing-jun2*, LIN Xiao-mei3*. Research on Selection Method of LIBS Feature Variables Based on CART Regression Tree[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3240-3244. |
[12] |
HE Ya-xiong1, ZHOU Wen-qi1, KE Chuan2, XU Tao1*, ZHAO Yong1, 2. Review of Laser-Induced Breakdown Spectroscopy in Gas Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2681-2687. |
[13] |
LIU Cui-ling1, YANG Yu-fei1*, TIAN Fang2, WU Jing-zhu1, SUN Xiao-rong1. Study on Quantitative Analysis of Edible Oil Peroxide Value by Terahertz Time Domain Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1387-1392. |
[14] |
WANG Dong, LIU Shan-jun*, QI Yu-xin, LIU Hai-qi. Effect of Particle Size on Reflectance Spectra of Anshan Iron Ore[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1513-1518. |
[15] |
CHEN Hao1, 2, JU Yu3, HAN Li1, CHANG Yang3. Curve Fitting of TDLAS Gas Concentration Calibration Based on Relative Error Least Square Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1580-1585. |
|
|
|
|