光谱学与光谱分析 |
|
|
|
|
|
Novel Variable Selection Method Based on Uninformative Variable Elimination and Ridge Extreme Learning Machine: CO Gas Concentration Retrieval Trial |
CHEN Yuan-yuan1,2,3, WANG Zhi-bin1,2,3, WANG Zhao-ba1,2,3 |
1. State Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan 030051, China2. Key Lab of Instrumentation Science & Dynamic Measurement, North University of China, Ministry of Education, Taiyuan 030051, China3. Engineering Technology Research Center of Shanxi Province for Opto-Electronic Information and Instrument, North University of China, Taiyuan 030051, China |
|
|
Abstract Variable selection is an essential part in spectroscopy analysis area. To overcome the problems of traditional interval selection methods, this paper proposed a novel variable selection and assessment method based on uninformative variable elimination (UVE) and ridge extreme learning machine (RELM) algorithms. Firstly, the UVE method was adopted to eliminate the uninformative wavelengths. Secondly, to solve the collinearity problem, RELM algorithm was adopted to replace the traditional modeling methods (PLS, BP neural network, etc.). Finally, the optimal combination of wavelength regions was selected by using feature selection path (FSP) plot and sparsity-error trade-off (SET) curve. The experiment results of CO gas concentration retrieval showed that (1) the UVE algorithm can select the most informative variables, which were the feature wavelengths of the CO gas transmittance spectrum; (2) the RELM algorithm has the advantage of rapid modeling, solving the collinearity problem, and high accuracy (the determined coefficient r of CO gas concentration retrieval can reach 0.995); (3) the FSP plot and SET curve were easy understanding, also intuitive to experts to find the best combination of wavelengths and extract useful domain knowledge.
|
Received: 2015-09-24
Accepted: 2016-01-28
|
|
Corresponding Authors:
CHEN Yuan-yuan
E-mail: chenyy@nuc.edu.cn
|
|
[1] Z. Xiaobo, Z. Jiewen, Povey M J, et al. Anal. Chim. Acta, 2010, 667(1-2): 14. [2] Javier Moros J K, Guillermo Quintas, Salvador Garrigues,et al. Anal. Chim. Acta, 2008, 630(2): 150. [3] Frénay Benot, Mark van Heeswijk, Yoan Miche,et al. Neurocomputing, 2013, 102: 111. [4] Huang G B, Zhu Q Y, Siew C K. Neurocomputing, 2006, 70(1-3): 489. [5] Li G Q, Niu P F. Neural Comput. Appl., 2013, 22: 803. [6] Araújo M C U, Saldanha T C B, Galvao R K H, et al. Chemometr. Intell. Lab, 2001, 57(2): 65. [7] Liu F, Jiang Y, He Y. Anal. Chim. Acta, 2009, 635(1): 45. [8] Pontes M J C, Cortez J, Galvao R K H, et al. Analytica Chimica Acta, 2009, 642(1-2): 12. [9] Ouyang A G, Liu J. Meas. Sci. Technol., 2013, 24. [10] Centner V, Massart D L, deNoord O E, et al. Anal. Chem., 1996, 68(21): 3851. [11] Abrahamsson C, Johansson J, Sparen A, et al. Chemometr. Intell. Lab, 2003, 69(1-2): 3. [12] Cai W S, Li Y K, Shao X G. Chemometr. Intell. Lab, 2008, 90(2): 188. [13] Todeschini R, Galvagni D, Vilchez J L,et al. Trac-Trend. Anal. Chem., 1999, 18(2): 93. [14] Boger Z. Analytica Chimica Acta, 2003, 490: 31. [15] Lucasius C B, Beckers M L M, Kateman G. Analytica Chimica Acta, 1994, 286(2): 135. [16] Leardi R, Gonzalez A L. Chemometr. Intell. Lab, 1998, 41: 195. [17] Leardi R, Seasholtz M B, Pell R J. Analytica Chimica Acta, 2002, 461(2): 189. [18] Ghasemi J, Niazi A, Leardi R. Talanta, 2003, 59(2): 311. [19] Abdollahi H, Bagheri L. Analytica Chimica Acta, 2004, 514(2): 211. [20] Gourvenec S, Capron X, Massart D L. Analytica Chimica Acta, 2004, 519(1): 11. [21] Durand A, Devos O, Ruckebusch C. Analytica Chimica Acta, 2007, 595(1-2): 72. [22] da Costa Filho P A. Anal. Chim. Acta, 2009, 631(2): 206. [23] Givianrad M H, Saber-Tehrani M, Zarin S,et al. Journal of the Serbian Chemical Society, 2013, 78(4): 555. [24] Norgaard L, Saudland A, Wagner J, et al. Appl. Spectrosc., 2000, 54(3): 413. [25] Pereira A F C, Pontes M J C, Gambarra F F, et al. Food Res. Int., 2008,41: 341. [26] Cramer J A, Kramer K E, Johnson K J, et al. Chemometr. Intell. Lab, 2008, 92(1): 13. [27] Zou X B, Zhao J W, Huang X Y, et al. Chemometr. Intell. Lab, 2007, 87(1): 43. [28] Zou X B, Zhao H W, Li Y X. Vib. Spectrosc., 2007, 44: 220. [29] Hemmateenejad B, Akhond M, Samari F. Spectrochim Acta A, 2007, 67(3-4): 958. [30] Chen D, Cai W S, Shao X G. Chemometr. Intell. Lab, 2007, 87: 312. [31] Bogomolov A, Hachey M. Chemometr. Intell. Lab, 2007, 88(1): 132. [32] Kasemsumran S, Du Y P, Maruo K, et al. Chemometr. Intell. Lab, 2006,82:97. [33] Norgaard L, Hahn M T, Knudsen L B, et al. Int. Dairy J, 2005, 15(12): 1261. [34] Stordrange L, Rajalahti T, Libnau F O. Chemometr. Intell. Lab, 2004, 70(2): 137. [35] Du Y P, Liang Y Z, Jiang J H, et al. Analytica Chimica Acta, 2004, 501(2): 183. [36] Baskir I M, Drozd A V. Chemometr. Intell. Lab, 2003, 66(1): 89. [37] Jiang J H, Berry R J, Siesler H W, et al. Anal. Chem., 2002, 74(14): 3555. |
[1] |
GUI Ming-cheng1, ZHU Wei-hua1*, ZHU Feng2, GENG Ying3,HUA Wei-hao1, TANG Chun-mei1, ZHAO Zhi-min4*. Research on the Determination of Glucose Based on Human Serum Fluorescence Spectrum and Improved Variable Selection Strategy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(09): 2817-2821. |
[2] |
YAN Sheng-ke1, YANG Hui-hua1, 2*, HU Bai-chao1, REN Chao-chao1, LIU Zhen-bing1. Variable Selection Method of NIR Spectroscopy Based on Least Angle Regression and GA-PLS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(06): 1733-1738. |
[3] |
SONG Xiang-zhong, TANG Guo, ZHANG Lu-da, XIONG Yan-mei, MIN Shun-geng*. Research Advance of Variable Selection Algorithms in Near Infrared Spectroscopy Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(04): 1048-1052. |
[4] |
SUN Tong, MO Xin-xin, LI Xiao-zhen, WU Yi-qing, LIU Mu-hua* . Qualitative Detection of Procymidone in Edible Vegetable Oils by Near Infrared Spectroscopy and Variable Selection Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(12): 3915-3919. |
[5] |
SUN Tong1, WU Yi-qing1, LIU Xiu-hong2, MO Xin-xin1, LIU Mu-hua1* . Detection of Chromium Content in Soybean Oil by Laser Induced Breakdown Spectroscopy and UVE Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(10): 3341-3345. |
[6] |
SUN Tong1, GENG Xiang2,3*, LIU Mu-hua1*. Determination of Cotton Content in Cotton/Ramie Blended Fabric by NIR Spectra and Variable Selection Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(12): 3257-3261. |
[7] |
ZHAO Zhen-ying, LIN Jun*, ZHANG Fu-dong, LI Jun . Research on Wavelength Variates Selection Methods for Determination of Oil Yield in Oil Shales using Near-Infrared Spectroscopy [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(11): 2948-2952. |
[8] |
CAO Hong1, QU Wen-tai2*, YANG Xiang-long1, 2, JIA Sheng-yao1, WANG Chun-long1, LU Chen1 . Research on Rapid Determination of Organic Matter Concentration in Aquaculture Water Based on Ultraviolet/Visible Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(11): 3015-3019. |
[9] |
ZHAN Bai-shao, NI Jun-hui*, LI Jun . Hyperspectral Technology Combined with CARS Algorithm to Quantitatively Determine the SSC in Korla Fragrant Pear[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(10): 2752-2757. |
[10] |
HUANG Tao1, LI Xiao-yu1*, PENG Yi2, TAO Hai-long1, LI Peng1, XIONG Shan-bai3 . Freshwater Fish Freshness On-Line Detection Method Based on Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(10): 2732-2736. |
[11] |
JIA Sheng-yao1, 2, TANG Xu3, YANG Xiang-long1, 2, LI Guang4, ZHANG Jian-ming4* . Visible and Near Infrared Spectroscopy Combined with Recursive Variable Selection to Quantitatively Determine Soil Total Nitrogen and Organic Matter[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(08): 2070-2075. |
[12] |
LI Jiang-bo1, 2, PENG Yan-kun2, CHEN Li-ping1, HUANG Wen-qian1* . Near-Infrared Hyperspectral Imaging Combined with CARS Algorithm to Quantitatively Determine Soluble Solids Content in “Ya” Pear [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(05): 1264-1269. |
[13] |
HUANG Wen-qian, LI Jiang-bo, CHEN Li-ping*, GUO Zhi-ming . Effectively Predicting Soluble Solids Content in Apple Based on Hyperspectral Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(10): 2843-2846. |
[14] |
SHEN Zhang-quan1, LU Bi-hui1, SHAN Ying-jie2, XU Hong-wei1 . Study on Soil Carbon Estimation by On-the-Go Near-Infrared Spectra and Partial Least Squares Regression with Variable Selection [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(07): 1775-1780. |
[15] |
HAO Yong1, SUN Xu-dong1, YANG Qiang2 . Variable Selection Methods Combined with Local Linear Embedding Theory Used for Optimization of Near Infrared Spectral Quantitative Models[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(12): 3208-3212. |
|
|
|
|