光谱学与光谱分析
|
核酸-桑色素-铝(Ⅲ)三元荧光体系的研究
林旭聪, 谢增鸿* , 郭良洽, 陈国南
福州大学化学化工学院化学系,福建 福州 350002
Studies on a New Fluorescence-Enhanced System of Nucleic Acids-Morin-Al(Ⅲ)
LIN Xu-cong, XIE Zeng-hong* , GUO Liang-qia, CHEN Guo-nan
Department of Chemistry, Fuzhou University, Fuzhou 350002, China
摘要 : 基于核酸对桑色素-铝(Ⅲ)配合物的荧光增强作用,以桑色素-铝(Ⅲ)为荧光探针,考察该探针与核酸的结合反应,建立了新的准确测定核酸的方法,并研究了该三元荧光体系的作用机理。在pH 8.5时,fsDNA,ctDNA,smDNA和yRNA的浓度与桑色素-铝(Ⅲ)的荧光强度成线性关系,响应范围分别为0.25~1.50,0.25~2.00,0.10~1.60和0.25~2.00 μg·mL-1 ,检测限(3σ/K )分别为3,2,2和3 ng·mL-1 。测定了合成样品,回收率93.3%~107.9%,相对标准偏差小于3.6%。
关键词 :桑色素-铝(Ⅲ);核酸;荧光探针
Abstract :A fluorescence-enhanced system was developed for the determination of nucleic acids by using morin-aluminum(Ⅲ) complex as a new fluorescent probe. In aqueous solution, morin-aluminum(Ⅲ) complex showed maximum excitation and emission wavelengths at 420.0 nm and 532.8 nm, respectively, and its fluorescence could be greatly enhanced in the presence of nucleic acids. Under optimal conditions, the calibration graph was linear over the range 0.25-1.50 μg·mL-1 for fish sperm DNA, 0.10-1.60 μg·mL-1 for salmon sperm DNA, 0.25-2.00 μg·mL-1 for calf thymus DNA and 0.25-2.00 μg·mL-1 for yeast RNA. The corresponding detection limits are 3 ng·mL-1 , 2 ng·mL-1 , 2 ng·mL-1 and 3 ng·mL-1 , respectively. Applied for the determination of nucleic acids in synthetic samples, the relative standard deviation for five replicates is less than 3.6%, and the recovery ranges from 93.3% to 107.9%. Additionally, the interaction mechanism of morin-aluminum(Ⅲ) with nucleic acids is also discussed.
Key words :Morin-aluminum(Ⅲ);Nucleic acids;Fluorescent robe
收稿日期: 2003-04-06
修订日期: 2004-08-18
通讯作者:
谢增鸿
引用本文:
林旭聪, 谢增鸿* , 郭良洽, 陈国南 . 核酸-桑色素-铝(Ⅲ)三元荧光体系的研究 [J]. 光谱学与光谱分析, 2004, 24(10): 1230-1234.
LIN Xu-cong, XIE Zeng-hong* , GUO Liang-qia, CHEN Guo-nan . Studies on a New Fluorescence-Enhanced System of Nucleic Acids-Morin-Al(Ⅲ) . SPECTROSCOPY AND SPECTRAL ANALYSIS, 2004, 24(10): 1230-1234.
链接本文:
http://www.gpxygpfx.com/CN/Y2004/V24/I10/1230
[1] Talavera Eva M, Afkrir Moustafa, Salto Rafael et al. Journal of Photochemistry and Photobiology B: Biology, 2000, 59: 9. [2] LING Lian-sheng,HE Zhi-ke,ZENG Yun-e(凌连生,何治柯,曾云鹗). Chinese Journal of Analytical Chemistry (分析化学),2001, 29(6): 721. [3] WU Ming-hu, SONG Gong-wu, LING Lian-sheng, HE Zhi-ke, ZENG Yun-e(吴鸣虎,宋功武,凌连生,何治柯,曾云鹗). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2000, 20(4): 575. [4] Song Yumin, Kang Jingwan, Zhou Jing et al. Spectrochimica Acta Part A, 2000, 56: 2491. [5] ZHANG Hong-man, GUO Xiang-qun, ZHAO Yi-bing et al. Analytica Chimica Acta, 1998, 361: 9. [6] Yang Jinghe, Lin Cunguo, Zhang Guiling et al. Spectrochimica Acta Part A, 1998, 54: 2019. [7] Stivers James T. Nucleic Acids Research, 1998, 26(16): 3837. [8] Lorenz Mike, Hillisch Alexander, Diekmann Stephan. Molecular Biotechnology, 2002, 82: 197. [9] HUANG Cheng-zhi, LI Yuan-fang,TONG Shen-yang. Analytical Letters, 1997, 30(7): 1305. [10] Dietrich Anja, Buschmann Volker, Muller Christian et al. Molecular Biotechnology, 2002, 82: 211.
[1]
万小铭,曾伟斌,雷 梅,陈同斌,. 蜈蚣草孢子囊元素组成的X射线光谱分析 [J]. 光谱学与光谱分析, 2022, 42(02): 478-482.
[2]
. 番茄蛋白酶类劣变因子荧光传感器阵列检测技术研究 [J]. 光谱学与光谱分析, 2020, 40(11): 3477-3482.
[3]
. 苯并噻唑类探针取代基结构对金属离子识别性能的影响 [J]. 光谱学与光谱分析, 2020, 40(11): 3594-3598.
[4]
. 表面增强拉曼散射技术在核酸检测中的研究进展及应用 [J]. 光谱学与光谱分析, 2020, 40(10): 3021-3028.
[5]
. 环境雌激素SERS检测的研究进展 [J]. 光谱学与光谱分析, 2020, 40(10): 3038-3047.
[6]
. Cy3标记农药核酸适配体表面增强拉曼光谱法特异性检测痕量啶虫脒 [J]. 光谱学与光谱分析, 2020, 40(08): 2462-2467.
[7]
. 一种基于苯并噻唑的长波长双响应性荧光探针对粘度与H2 O2 的检测 [J]. 光谱学与光谱分析, 2020, 40(06): 1775-1779.
[8]
. 以花生碳量子点为探针基于其荧光猝灭-恢复测定多巴胺的研究 [J]. 光谱学与光谱分析, 2020, 40(04): 1093-1098.
[9]
. 基于核酸适配体及胶体金可视化检测水中孔雀石绿 [J]. 光谱学与光谱分析, 2020, 40(03): 831-836.
[10]
. 基于荧光光谱的2,4,6-三硝基苯酚(TNP)快速检测体系 [J]. 光谱学与光谱分析, 2020, 40(03): 804-808.
[11]
. 9,10-二苯基蒽衍生物的制备及对铜离子上、下转换检测研究 [J]. 光谱学与光谱分析, 2019, 39(12): 3769-3775.
[12]
. 新型汞离子CQDs-CuNCs比率荧光探针的构建及在螃蟹中的应用 [J]. 光谱学与光谱分析, 2019, 39(12): 3925-3931.
[13]
. 基于上/下转换发光的新型比率荧光温度探针 [J]. 光谱学与光谱分析, 2019, 39(10): 3088-3095.
[14]
. 基于裂开型核酸适体非标记荧光法检测ATP [J]. 光谱学与光谱分析, 2019, 39(09): 2769-2773.
[15]
. 基于氮化碳量子点和金纳米簇的尿液中胰蛋白酶高灵敏度荧光检测研究 [J]. 光谱学与光谱分析, 2019, 39(09): 2901-2906.