|
|
|
|
|
|
The Solution of Non-Linear Function of Ion Mobility Based on FAIMS Spectrum Peak Position |
WU Zhi-yuan1,YU Jian-wen1,2,LIU You-jiang1,CHEN Chi-lai1* |
1. State Key Laboratory of Transducer Technology, Institute of Intelligent Machines, Chinese Academy of Sciences,Hefei 230031,China
2. School of Mechanical Engineering, Hefei University of Technology, Hefei 230009,China |
|
|
Abstract Volatile chlorobenzenes (CBs) is an organic pollutant which exists ubiquitously in the environment. Ion Mobility Spectrometry (IMS) has been a powerful technique for quick ion-separation and detection under ambient pressure. In this paper, atmospheric chlorobenzene, p-dichlorobenzene, o-dichlorobenzene and m-dichlorobenzene were detected by a homemade Vacuum Ultraviolet Field Asymmetric Waveform Ion Mobility Spectrometry (UV-FAIMS). The CV-I spectra under different Dispersion Voltage (DV) were obtained, then the CV-DV fingerprints spectra of the four substances were synthetized. Base on the fingerprint spectra, optimal separation and detection parameters of three isomers: dichlorobenzene, o-dichlorobenzene, m-dichlorobenzene were determined. The results showed that under the DV of 800 and 1 000 V, three substances could be effectively identified at CV of 20.4 V (DV=800 V), 3.2 V(DV=800 V) and 11.9 V(DV=1 000 V), respectively, by selecting the characteristic peaks. The influences of flow rate on FWHM and peak position of FAIMS spectrum were studied and the results provided a reference for flow optimization. The limit of detection (LOD) of UV-FAIMS investigated by using different concentrations of dichlorobenzene at DV=450 V and CV=4.3V was lower than 0.05 mg·m-3. This paper provides a rapid and accurate detection method for halogenated benzene pollutant and other isomers of benzene.
|
Received: 2016-11-02
Accepted: 2017-04-08
|
|
Corresponding Authors:
CHEN Chi-lai
E-mail: chlchen@iim.ac.cn
|
|
[1] Dobrzyńska E, Pos′niak M, Szewczyńska M et al. Critical Reviews in Analytical Chemistry,2010, 40(1): 41.
[2] Wang F, Li C, Liu W,et al. Inhalation Toxicology,2013, 25(5): 235.
[3] HUANG Wei, XIAO Shang-jia(黄 薇, 肖上甲). Modern Preventive Medicine(现代预防医学),2003, (2): 188.
[4] Wiley J S, Shelley J T, Cooks R G. Analytical Chemistry, 2013, 85(14): 6545.
[5] Smulko J M, Trawka M, Granqvist C G,et al. Sensor Review,2015, 35(4): 340.
[6] DONG Jia-meng, PENG Xiao-yu, MA Xiao-hui, et al(董家蒙, 彭晓昱, 马晓辉,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2016,36(5):1277.
[7] CHU Xiao-li, LU Wan-zhen(褚小立, 陆婉珍). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2014,34(10):2595.
[8] Cumeras R, Figueras E, Davis C E, et al. Analyst, 2015, 140(5): 1376.
[9] Cumeras R, Figueras E, Davis C E,et al. Analyst,2015, 140(5): 1391.
[10] Kolakowski B M, Mester Z. Analyst,2007, 132(9): 842.
[11] Guevremont R, Makowski B. American Laboratory,2005, 37(13): 11.
[12] Miller R A, Eiceman G A, Nazarov E G. The International Journal for Ion Mobility Spectrometry,2002, 5(2): 118.
[13] Borsdorf H, Nazarov E G, Eiceman G A. International Journal of Mass Spectrometry,2004, 232(2): 117.
[14] LIU Kun, TANG Fei, WANG Xiao-hao, et al(刘 坤, 唐 飞, 王晓浩,等). Acta Physico- Chimica Sinica(物理化学学报),2009, (8): 1662.
[15] Junju F P, Maher S, Li A,et al. Analytical Chemistry,2015, 87(19): 10047.
[16] Singh D, Kumar A, Singh B P, et al. Air Quality, Atmosphere & Health,2016, 9: 483.
[17] Kauppila T J, Syage J A, Benter T. Mass Spectrometry Reviews,2015, 103: 377. |
[1] |
GE Deng-yun, XU Min-min, YUAN Ya-xian*, YAO Jian-lin*. Surface-Enhanced Raman Spectroscopic Investigation on the Effect of
Solution pH on Dehydroxylation of Hydroxythiophenol Isomers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2076-2081. |
[2] |
HUANG Li-juan, ZHANG Xin, WANG Guo, ZHANG Zhuo-yong*. Analysis of Leucine and Isoleucine for Low-Frequency Collective Absorption Spectrum Using Terahertz Time-Domain Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(08): 2462-2466. |
[3] |
LIU Jian-wei, SHEN Jing-ling*, ZHANG Bo . Identification of Six Isomers of Dimethylbenzoic Acid by Using Terahertz Time-Domain Spectroscopy Technique [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(11): 3041-3045. |
[4] |
YIN Dan-dan1, WU Jing1*, XIE Chao-bo1, CAO Zhi-ping1, Lü Qing2, ZHANG Ren-quan2 . Comparison of Three-Dimensional Fluorescence Characteristics of Two Isomers:Phenanthrene and Anthrancene[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(12): 3263-3268. |
[5] |
LI Hu1,3, NIU Wen-qi2, WANG Hong-mei1, HUANG Chao-qun1, JIANG Hai-he1, CHU Yan-nan1* . Photoionization Ion Mobility Spectrometry (UV-IMS) for the Isomeric Volatile Organic Compounds [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(01): 29-32. |
[6] |
LI Zhuang1, 2,LIN Bing-tao1, 2,KONG De-yi1*,CHEN Chi-lai1,CHENG Yu-peng1,2,WANG Huan-qin1,MEI Tao1 . FAIMS of Trace Volatile Organic Compounds [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2011, 31(01): 12-15. |
[7] |
LI Zhao-ye1, GENG Xiao-tian1, WANG Juan1, ZHAO Ying2, WU Hong3, YAN Jian-bo3, WANG Yun-you3, SUN Bo1* . Study on Photoluminescence of 2-(4-Chloro-Benzoyl)Benzoic Acid Complexes [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2009, 29(11): 2904-2908. |
[8] |
HAN Hai-yan, JIA Xian-de, HUANG Guo-dong, WANG Hong-mei, LI Jian-quan, JIN Shun-ping, JIANG Hai-he, CHU Yan-nan*, ZHOU Shi-kang. Ion Mobility Spectrometry for the Isomeric Volatile Organic Compounds[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2007, 27(10): 1925-1928. |
[9] |
WU Zhong-chen1, XU Xiao-xuan1, YANG Ren-jie1, YU Gang2, ZHANG Cun-zhou1 . Adopting the Method of Correlation Coefficient to Improve the Accuracy of the Xylene Isomer’s Prediction Model [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2005, 25(01): 136-140. |
|
|
|
|