光谱学与光谱分析 |
|
|
|
|
|
Determination of Cadmium in Shrimp and Shell Fish Samples by Coprecipitation Enrichment with Mn(Ⅱ)-5-Br-PADAP Flame Atomic Absorption Spectrometry |
CHEN Qing-hui1, WAN Yao-yu1, LI Qian2, YAO Jun-xue1* |
1.School of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot 010021, China 2.Inner Mongolia Yuanxing Energy and Chemical Engineering Industry Co. Ltd. of China Coal, Wushen banner 017300, China |
|
|
Abstract A separation/preconcentration procedure with coprecipitation has been proposed for the flame atomic absorption spectrometric (FAAS) determination of cadmium at trace level in food and environmental samples. Manganese(Ⅱ) was used as a carrier which chelated with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol to detect the content of trace cadmium in shrimp and shell fish samples with flame atomic absorption spectrometry for the first time. The precipitate could be easily dissolved with concentrated nitric acid. The optimum coprecipitation of this new method including the amount of reagent, amount of manganese(Ⅱ), the pH, and the standing time of the precipitate had been confirmed for the quantitative recoveries of the analytes. The effect of matrix ions and the interference of co-existing ions were also evaluated. Under the experimental conditions established by the optimization step, the system of Mn(Ⅱ)-5-Br-PADAP was able to overcome the matrix interference which showed the effect of separation and enrichment well. The linear range of cadmium content was determined to be 0.1~1.0 mg·L-1. The sensitivity and the relative standard deviation(RSD) were found 0.147(mg·L-1)-1, 0.73%, respectively. The optimum procedure allows the determination of cadmium with limit of detection of 4.27 μg·L-1. The complexity of preprocessing was determined by the complexity of food samples. So the differences of cadmium content in the samples between the direct determination with atomic absorption spectrometry and the measurement after coprecipitation were examined, which providedevidences for the superiority of the system again. Cadmium in shell fish and shrimp samples were 1.85 mg·kg-1 and 1.74 mg·kg-1, which in line with international standards of the Codex Alimentarius Commission(CAC). The credibility of the method was evaluated by standard additional method and recovery experiments. The standard addition recoveries of sample and RSDs of the method were in the range of 99.9%~100.3% and 0.15%~0.83%. The results of recovery experiment showed that the presented coprecipitation procedure had good repetition, high accuracy. In addition, with the method, we could draw conclusions that the experiments were simple and rapid. The developed method described in the literature was successfully applied for the determination of trace cadmium in shrimp and shell fish samples with satisfactory results.
|
Received: 2015-07-21
Accepted: 2015-11-23
|
|
Corresponding Authors:
YAO Jun-xue
E-mail: jxyao108@sohu.com
|
|
[1] Demirhan Citak,Mustafa Tuzen,Mustafa Soylak. Journal of Hazardous Materials,2010,173:773. [2] Petya Vassileva Racheva,Kirila Trifonova Stojnova,Vanya Dimitrova Lekova,et al. Croatica Chemica Acta,2015,88(2):159. [3] Stefanova Teodora S,Simitchiev Kiril K,Gavazov Kiril B. Chemical Papers,2015,69(4):495. [4] Laura Bille,Giovanni Binato,Veronica Cappa,et al. Food Control,2015,50:362. [5] Li Xuepeng,Li Jianrong,Wang Yanbo,et al. Journal of Environmental Science and Health,Part A,2010,45(7):836. [6] WU Yu-lian,LIAO Yan,YANG Jie,et al(吴育廉, 廖 艳, 杨 捷, 等). Food Science and Technology(食品科技),2013,38(9):296. |
[1] |
XU Tian1, 2, LI Jing1, 2, LIU Zhen-hua1, 2*. Remote Sensing Inversion of Soil Manganese in Nanchuan District, Chongqing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 69-75. |
[2] |
CI Cheng-gang*, ZANG Jie-chao, LI Ming-fei*. DFT Study on Spectra of Mn-Carbonyl Molecular Complexes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1434-1441. |
[3] |
LAI Si-han1, LIU Yan-song1, 2, 3*, LI Cheng-lin1, WANG Di1, HE Xing-hui1, LIU Qi1, SHEN Qian4. Study on Hyperspectral Inversion of Rare-Dispersed Element Cadmium Content in Lead-Zinc Ores[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1275-1281. |
[4] |
FAN Chun-hui1, 2, ZHENG Jin-huan3, LIU Hong-xin1. FTIR, 2D-IR and XPS Analyses on the Mechanism of Protoplast Derived From Calendula Officinalis in Response to Lead and Cadmium in Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1420-1425. |
[5] |
LÜ Yang, PEI Jing-cheng*, GAO Ya-ting, CHEN Bo-yu. Chemical Constituents and Spectra Characterization of Gem-Grade
Triplite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1204-1208. |
[6] |
FAN Chun-hui1,2, ZHENG Jin-huan3, WANG Yu-fei3, SU Zhe3, LIN Long-jian3, YANG Chen3. Adsorption of Cadmium on Fe-Mn Nodules Derived From Soil by Spectral Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 616-621. |
[7] |
ZHANG Xin-bo1, CONG Long-zhuang1, YANG Lan-lan1, DU Zhong-lin1, WANG Yao1, WANG Yan-xin1, HUANG Lin-jun1, GAO Fan1, Laurence A. Belfiore2, TANG Jian-guo1*. Optimal Fluorescence Property of CdSe Quantum Dots and Electrospinning Polyvinylpyrrolidone Hybrid Microfibers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 990-996. |
[8] |
YAN Hui, LI Xin-ping, XU Zhu, LIN Guo-sen. Applications of Fluorescence Analysis Technology on Study of Crop Response to Cadmium Stress[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(10): 3118-3122. |
[9] |
ZHANG Liang-liang, WANG Chang-hua, HU Fang-fei, MO Shu-min, LI Ji-dong*. Determination of Trace Impurity Elements in Zircaloy by Ion Exchange-Inductively Coupled Plasma Mass Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(08): 2622-2628. |
[10] |
LIU Cui-hong1, CHEN Chao-yang1, SHAO Tian1, LI Zhi-bin2, Andy Hsitien Shen1*. UV-Vis Absorption Spectra and 3D Fluorescence Spectra Study of Color-Change Garnet with Red Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(07): 2148-2152. |
[11] |
ZHANG Chen-ling, HAN Mei, JIA Na, LIU Bing-bing, LIU Jia*, WANG Zhen-xing, LIU Ling-xia. A Study on Adsorption of Cd on Activated Carbon Fiber by Using ICP-OES[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(03): 931-936. |
[12] |
ZHANG Han, XUE Ai-fang, CHEN Hao, LI Sheng-qing*. Low-Density Solvent Based Dispersive Liquid-Liquid Microextraction Combined with Graphite Furnace Atomic Absorption Spectrometry for the Determination of Trace Lead and Cadmium in Domestic Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(10): 3264-3268. |
[13] |
CHEN Zhuo1, SU Yu-qing2, SONG Shan1, YAO Jun-xue1*. Determination of Manganese in Water Samples by Cloud Point Extraction with MN-CCA-CPC Flame Atomic Absorption Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(08): 2595-2599. |
[14] |
CHEN Ji-wen1,2, NI Zi-yue1, CHENG Da-wei2, LIU Ming-bo2, LIAO Xue-liang2, YANG Bo-zan2, YUE Yuan-bo2, HAN Bing2, LI Xiao-jia1,2. The Rapid Detection of Cadmium in Soil Based on Energy Dispersive X-Ray Flourescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(08): 2600-2605. |
[15] |
WANG Shuai1, XU Jun-ping1, WANG Nan1, LEI Wan-ying1, FAN Xi-yan1, DOU Sen2, 3*. Structural Characteristics of Mineral-Microbial Residues Formed by Microbial Utilization of Lignin Joined with Fe, Al, Mn-Oxides Based on FT-IR and SEM Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2086-2093. |
|
|
|
|