光谱学与光谱分析 |
|
|
|
|
|
Estimation of Vegetation Water Content from Landsat 8 OLI Data |
ZHENG Xing-ming1, 2, DING Yan-ling1, ZHAO Kai1, 2*, JIANG Tao1, LI Xiao-feng1, 2, ZHANG Shi-yi1, LI Yang-yang1, WU Li-li1, SUN Jian3, REN Jian-hua1, ZHANG Xuan-xuan4 |
1. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China 2. Changchun Jingyuetan Remote Sensing Test Site, Chinese Academy of Sciences, Changchun 130102, China 3. College of Electronic Science and Engineering, Jilin University, Changchun 130012, China 4. Institute for Geo-Informatics & Digital Mine Research, Northeastern University, Shenyang 110819, China |
|
|
Abstract The present paper aims to analyze the capabilities and limitations for retrieving vegetation water content from Landsat8 OLI (Operational Land Imager) sensor-new generation of earth observation program. First, the effect of soil background on canopy reflectance and the sensitive band to vegetation water content were analyzed based on simulated dataset from ProSail model. Then, based on vegetation water indices from Landsat8 OLI and field vegetation water content during June 1 2013 to August 14 2013, the best vegetation water index for estimating vegetation water content was found through comparing 12 different indices. The results show that: (1) red, near infrared and two shortwave infrared bands of OLI sensor are sensitive to the change in vegetation water content, and near infrared band is the most sensitive one; (2) At low vegetation coverage, solar radiation reflected by soil background will reach to spectral sensor and influence the relationship between vegetation water index and vegetation water content, and simulation results from ProSail model also show that soil background reflectance has a significant impact on vegetation canopy reflectance in both wet and dry soil conditions, so the optimized soil adjusted vegetation index (OSAVI) was used in this paper to remove the effect of soil background on vegetation water index and improve its relationship with vegetation water content; (3) for the 12 vegetation water indices, the relationship between MSI2 and vegetation water content is the best with the R-square of 0.948 and the average error of vegetation water content is 0.52 kg·m-2; (4) it is difficult to estimate vegetation water content from vegetation water indices when vegetation water content is larger than 2 kg·m-2 due to spectral saturation of these indices.
|
Received: 2013-10-11
Accepted: 2014-02-14
|
|
Corresponding Authors:
ZHAO Kai
E-mail: zhaokai@neigae.ac.cn
|
|
[1] Ceccato P, Gobron N, Flasse S,et al. Remote Sens. Environ., 2002, 82: 188. [2] Zarco-Tejada P J, Rueda C A, Ustin S L. Remote Sens. Environ., 2003, 85: 109. [3] ZHANG Jia-hua, XU Yun, YAO Feng-mei, et al(张佳华,许 云,姚凤梅,等). Sci. China Tech. Sci.(中国科学:技术科学),2010,40(10):1121. [4] Palmer K F, Williams D. Journal of the Optical Society of America, 1974, 64: 1107. [5] Tucker C. J. Remote Sens. Environ., 1980, 10: 23. [6] Saleem Ullaha, Andrew K Skidmorea, et al. Agricultural and Forest Meteorology, 2013, 171: 65. [7] Zhang J H, Guo W J. Proc. SPIE 6411, Agriculture and Hydrology Application of Remote Sensing, 2006, 64110D, DOI: 10.1117/12.697957. [8] Chuvieco E, Deshayes M, Stach N, et al. Remote Sensing of Large Wildfires: in the European Mediterranean Basin, Springer-Verlag, Berlin, 1999. 7. [9] Danson F M, Steven M D, Malthus T J, et al. Int. J. Remote Sens., 1992, 13(3): 461. [10] Knipling E B. Remote Sens. Environ., 1970, 1: 155. [11] Carter G A. Am. J. Bot., 1991, 78: 919. [12] Kou L, Labrie D, Chylek P. Appl. Opt., 1993, 32: 3531. [13] Curran P J. Remote Sens. Environ., 1989, 30: 271. [14] Ceccato P, Flasse S, Tarantola S, et al. Remote Sens. Environ., 2001, 77: 22. [15] Morisette J T, Baret F, Privette J L, et al. IEEE Transactions on Geosciences and Remote Sensing, 2006, 44(7): 1. [16] Dawson T P, Curran P J, North P R J,et al. Remote Sens. Environ., 1999, 67: 147. [17] Danson F M, Bowyer P. Remote Sens. Environ., 2004, 92: 309. [18] Jordan C F. Ecology, 1969, 50: 663. [19] Trombetti M, Riao D, Rubio M A,et al. Remote Sens. Environ., 2008, 112: 203. [20] Fensholt R, Sandholt I. Remote Sens. Environ., 2003, 87: 111. [21] ZHANG You-shui, XIE Yuan-li(张友水, 谢元礼). Scientia Geographica Sinica(地理科学), 2008, 28(1): 72. [22] WANG Zheng-xing, LIU Chuang, Huete A(王正兴,刘 闯,Huete A). Acta Ecologica Sinica(生态学报) 2003,23(5):979. [23] Serrano L, Ustin S L, Roberts D A, et al. Remote Sens. Environ., 2000, 74: 570. [24] Hardinsky M A, Lemas V, Smart R M. Photo Eng. Remote Sen., 1983, 49: 77. [25] Chen D, Huang J F, Jackson T J. Remote Sens. Environ., 2005, 98: 222. [26] Gao B C. Remote Sens. Environ., 1996, 58: 257. [27] Datt B. Australian Journal of Botany, 1999, 47: 909. [28] Wang L, Qu J J. Geophys. Res. Lett., 2007, 34: L20405. [29] Huete A, Didan K, Miura T, et al. Remote Sens. Environ., 2002, 83: 195. [30] Rondeaux G, Steven M, Baret F. Remote Sens. Environ., 1996, 55(2): 95 |
[1] |
LIANG Hao1, XU Wei-xin1*, DUAN Xu-hui1, ZHANG Juan2, DAI Na1, XIAO Qiang-zhi1, WANG Qi-yu1. Threshold Calibration of Key Parameters of Withered Grass Based on PROSAIL Model in Qinghai-Tibet Plateau[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1144-1149. |
[2] |
DENG Bing1, YANG Wu-nian1*, MU Nan2, ZHANG Chao1 . The Research of Vegetation Water Content Based on Spectrum Analysis and Angle Slope Index [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(08): 2546-2552. |
[3] |
XU Han-qiu, HUANG Shao-lin. A Comparative Study on the Calibration Accuracy of Landsat 8 Thermal Infrared Sensor Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(06): 1941-1948. |
[4] |
LI Wei1,2, MU Meng1, CHEN Guan-bin1, LIU Wei-nan1, LIU Yuan1,2, LIU Chang-fa1,2. Research on Remote Sensing Inversion of Suaeda Salsa’s Biomass Based on TSAVI for OLI Band Simulation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(05): 1418-1422. |
[5] |
SONG Xiao-ning1, MA Jian-wei1, LI Xiao-tao2, LENG Pei1, ZHOU Fang-cheng1, LI Shuang1 . Estimation of Vegetation Canopy Water Content Using Hyperion Hyperspectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(10): 2833-2837. |
[6] |
LI Hua-peng1, ZHANG Shu-qing1*, GAO Zi-qiang2, SUN Yan1 . Evaluating the Utility of MODIS Vegetation Index for Monitoring Agricultural Drought[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(03): 756-761. |
|
|
|
|