光谱学与光谱分析 |
|
|
|
|
|
The Spectroscopic and Electronic Properties of Dimethylpyrazole and Its Derivatives Using the Experimental and Computational Methods |
Adebayo A Adeniyi, Peter A Ajibade |
Department of Chemistry, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa |
|
|
Abstract In this paper the spectroscopic and the geometric properties of four ligands with pyrazole unit are studied at both experimental and computational levels. The computational results are perfectly in good agreement with the experimental results especially in terms of the IR, 1H-NMR and 13C-NMR shifts. The spectroscopic features as well as the computed properties help to establish the successful synthesis of ligands bdmpzm and bdmpza. The theoretical and the experimental IR and Raman significantly help in distinguishing the four ligands. The results show that the Raman spectral is better applicable in characterising the CH3 deformation, the C—H, CNN and CCNNout of the ligands but vibrations like N—H in dmpz and O—H, CO in bdmpza are observed to be Raman inactive. A significant variations are observed among the two available *N atoms characterising the bidentate features of bdmpzm, bdmpza and bdcpzm which indicates a possible different affinities for metal coordination. Also the result suggest that bdmpza will be the best starting material for NLO application than other while bdcpzm is predicted to have potential of been a poor coordinating ligand. The computed variations in the properties of *N atoms that are the characteristic features of their power of coordination can be of immense help since these type of ligands have a wide application in transition metal coordination.
|
Received: 2014-01-17
Accepted: 2014-04-09
|
|
Corresponding Authors:
Adebayo A Adeniyi
E-mail: pajibade@ufh.ac.za
|
|
[1] Burzlaff N, Hegelmann I, Weibert B. J. Organomet. Chem., 2001, 626: 16. [2] Otero A, Fernández-Baeza J, Antiolo A, et al. Dalton Trans., 2004, 1499. [3] Tang L F, Jia W F, Zhao X M, et al. J. Organomet. Chem., 2002, 658: 198. [4] Bureiko S F, Golubev N S, Denisov G S, et al. Rus. J. Gen. Chem., 2005, 75: 1821. [5] Türkoglu G, Tampier S, Strinitz F, et al. Organometal., 2012, 31: 2166. [6] Masaguer J R, Freijanes E, Sordo J, et al. Inorg. Chim. Acta, 1977, 25: 203. [7] Liang S, Wang H, Deb T, et al. Inorg. Chem., 2012, 51: 12707. [8] Chou C C, Su C C, Yeh A. Inorg. Chem., 2005, 44: 6122. [9] Díez-Barra E, García-Martínez J C, Guerra J, et al. ARKIVOC (v), 2002. 17. [10] Adamo C, Barone V. J. Chem. Phys., 1999, 110: 6158. [11] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian, Inc., Wallingford CT, 2009. [12] Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 1996, 77: 3865. [13] Becke A D. J. Chem. Phys., 1993, 98: 5648. [14] Helgaker T, Watson M, Handy N C. J. Chem. Phys., 2000, 113: 9402. [15] Sychrovsky V, Grafenstein J, Cremer D. J. Chem. Phys., 2000, 113: 3530. [16] Keith, T A. AIMAll (Version 12.06.03), TK Gristmill Software, Overland Park KS, USA, 2012, aim.tkgristmill.com. [17] O’Boyle N M, Tenderholt A L, Langner K M. J. Comp. Chem., 2008, 29: 839. [18] Allouche A R. J. Comp. Chem., 2011, 32: 174. [19] Jamróz M H. Vibrational Energy Distribution Analysis: VEDA 4, Program, Warsaw, 2004-2010. http://www.smmg.pl/. [20] Jamróz M H, Dobrowolski J C, Brzozowski R. A DFT Study Mol. Struc., 2006, 787: 172. [21] Jamróz M H. Spectrochimica Acta Part A: Mol. and Biomol. Spec., 2013, 114: 220. [22] Sanz D, Claramunt R M, Alkorta I, et al. Magn. Reson. Chem., 2012, 50: 246. [23] Cremer D, Grafenstein J. Phys. Chem. Chem. Phys., 2007, 9: 2791. [24] Gaur R, Mishra L. Inorg. Chem., 2012, 51: 3059. [25] Platts J A, Overgaard J, Jones C, et al. J. Phys. Chem. A, 2011, 115: 194. [26] Farrugia L J, Senn H M. J. Phys. Chem. A, 2012, 116: 738. [27] Gopakumar G, Ngan V T, Lievens P, et al. J. Phys. Chem. A, 2008, 112: 12187. [28] Parthasarathi R, Subramanian V. Characterization of Hydrogen Bonding: From van der Waals Interactions to Covalency. In Hydrogen Bonding—New Insights, Springer 2006, Chapter 1: 1. [29] Grabowski S J, Sokalski W A, Leszczynski J. Chem. Phys. Lett., 2006, 432: 33. [30] Alkorta I, Elguero J, Bene J E D. Chem. Phys. Let., 2010, 489: 159. [31] Koch U, Popelier P L A. J. Phys. Chem., 1995, 99: 9747. [32] Liu Y, Liu C G, Sun S L, et al. Comp. and Theoret. Chem., 2012, 979: 112. [33] Alparone A. J. Fluorine Chem., 2012, 144: 94. [34] Liyanage P S, de Silva R M, de Silva K M N. J. Mol. Struc. (Theochem), 2003, 639: 195. [35] Karabacak M, Cinar M. Spectrochimica Acta Part A, 2012, 86: 590. [36] Ebenso E E, Isabirye D A, Eddy N O. Int. J. Mol. Sci., 2010, 11: 2473. |
[1] |
GU Yi-lu1, 2,PEI Jing-cheng1, 2*,ZHANG Yu-hui1, 2,YIN Xi-yan1, 2,YU Min-da1, 2, LAI Xiao-jing1, 2. Gemological and Spectral Characterization of Yellowish Green Apatite From Mexico[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 181-187. |
[2] |
XU Qi-lei, GUO Lu-yu, DU Kang, SHAN Bao-ming, ZHANG Fang-kun*. A Hybrid Shrinkage Strategy Based on Variable Stable Weighted for Solution Concentration Measurement in Crystallization Via ATR-FTIR Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1413-1418. |
[3] |
KAN Yu-na1, LÜ Si-qi1, SHEN Zhe1, ZHANG Yi-meng1, WU Qin-xian1, PAN Ming-zhu1, 2*, ZHAI Sheng-cheng1, 2*. Study on Polyols Liquefaction Process of Chinese Sweet Gum (Liquidambar formosana) Fruit by FTIR Spectra With Principal Component Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1212-1217. |
[4] |
YAN Li-dong1, ZHU Ya-ming1*, CHENG Jun-xia1, GAO Li-juan1, BAI Yong-hui2, ZHAO Xue-fei1*. Study on the Correlation Between Pyrolysis Characteristics and Molecular Structure of Lignite Thermal Extract[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 962-968. |
[5] |
FENG Xin1, 2, FANG Chao1*, GONG Hai-feng2, LOU Xi-cheng1, PENG Ye1. Infrared and Visible Image Fusion Based on Two-Scale Decomposition and
Saliency Extraction[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 590-596. |
[6] |
LI Zong-xiang1, 2, ZHANG Ming-qian1*, YANG Zhi-bin1, DING Cong1, LIU Yu1, HUANG Ge1. Application of FTIR and XRD in Coal Structural Analysis of Fault
Tectonic[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 657-664. |
[7] |
CHENG Xiao-xiao1, 2, LIU Jian-guo1, XU Liang1*, XU Han-yang1, JIN Ling1, SHEN Xian-chun1, SUN Yong-feng1. Quantitative Analysis and Source of Trans-Boundary Gas Pollution in Industrial Park[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3762-3769. |
[8] |
ZHANG Hao1, 2, HAN Wei-sheng1, CHENG Zheng-ming3, FAN Wei-wei1, LONG Hong-ming2, LIU Zi-min4, ZHANG Gui-wen5. Thermal Oxidative Aging Mechanism of Modified Steel Slag/Rubber Composites Based on SEM and FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3906-3912. |
[9] |
CHEN Jing-yi1, ZHU Nan2, ZAN Jia-nan3, XIAO Zi-kang1, ZHENG Jing1, LIU Chang1, SHEN Rui1, WANG Fang1, 3*, LIU Yun-fei3, JIANG Ling3. IR Characterizations of Ribavirin, Chloroquine Diphosphate and
Abidol Hydrochloride[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2047-2055. |
[10] |
MA Fang1, HUANG An-min2, ZHANG Qiu-hui1*. Discrimination of Four Black Heartwoods Using FTIR Spectroscopy and
Clustering Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1915-1921. |
[11] |
FAN Chun-hui1, 2, ZHENG Jin-huan3, LIU Hong-xin1. FTIR, 2D-IR and XPS Analyses on the Mechanism of Protoplast Derived From Calendula Officinalis in Response to Lead and Cadmium in Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1420-1425. |
[12] |
YANG Yan-ling1, Andy Hsitien Shen1, FAN Yu-rong2, HUANG Wei-zhi1, PEI Jing-cheng1*. UV-Vis-NIR Spectroscopic Characteristics of Vanadium-Rich
Hydrothermal Synthetic Emeralds From Russia[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1199-1203. |
[13] |
ZHANG Dian-kai1, LI Yan-hong1*, ZI Chang-yu1, ZHANG Yuan-qin1, YANG Rong1, TIAN Guo-cai2, ZHAO Wen-bo1. Molecular Structure and Molecular Simulation of Eshan Lignite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1293-1298. |
[14] |
WANG Fang-fang1, ZHANG Xiao-dong1, 2*, PING Xiao-duo1, ZHANG Shuo1, LIU Xiao1, 2. Effect of Acidification Pretreatment on the Composition and Structure of Soluble Organic Matter in Coking Coal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 896-903. |
[15] |
HU Chao-shuai1, XU Yun-liang1, CHU Hong-yu1, CHENG Jun-xia1, GAO Li-juan1, ZHU Ya-ming1, 2*, ZHAO Xue-fei1, 2*. FTIR Analysis of the Correlation Between the Pyrolysis Characteristics and Molecular Structure of Ultrasonic Extraction Derived From Mid-Temperature Pitch[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 889-895. |
|
|
|
|