光谱学与光谱分析 |
|
|
|
|
|
Upconversion and Mid-Infrared Fluorescence Properties of Ho3+/Yb3+ Co-Doped 50SiO2-50PbF2 Glass Ceramic |
ZHANG Xiao-guang1,2, REN Guo-zhong2,3, YANG Huai4 |
1. Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 2. Science and Technology on Electro-Optical Information Securiety Control Laboratory, Sanhe 065201, China 3. Key Laboratory of Low Dimensional Materials & Application Technology, Xiangtan University, Xiangtan 411105, China 4. Department of Advanced Materials and Nanotechnology, College of Engieering of Peking University, Beijing 100871, China |
|
|
Abstract In the present paper, the upconversion and mid-infrared fluorescence properties of Ho3+/Yb3+ co-doped 50SiO2-50PbF2 glass ceramic (GC) were studied. The GC has the following composition (in mol%): 50SiO2-50PbF2-1YbF3-0.5HoF3. The mixtures of about 10 g were placed in a corundum crucible and melted at 1 000 ℃ for 15 min in a SiC electric furnace in air and then poured on a brass plate. The GCs were obtained just by heat treatment at 450 ℃. The X-ray diffraction pattern of the GC indicates that very small size crystals were precipitated in the precursor glass by heat treatment. The GCs have as high transmittance as glasses. The GCs have higher absorption cross section and narrower absorption peaks compared to the corresponding glasses, indicating that fluoride is doped with Ho ions. The Judd-Ofelt intensity parameters were determined from the absorption spectrum and Judd-Ofelt theory. The Ω2 value is 0.17×10-20 cm2 lower than that of fluoride glass ZBLA (2.28×10-20 cm2), because of Ho3+ doping in PbF2 microcrystal. The intense green upconversion light was observed in Ho3+/Yb3+ co-doped 50SiO2-50PbF2 GCs excited by 980 nm laser diode. A main emission band centered around 540 nm (green), and three week emission bands centered around 420 nm(violet), 480 nm (blue), and 650 nm (red) which correspond to the Ho3+: (5F4→5I8), (5G6→5I8), (8K3→5I8) and (5F5→5I8) transitions, respectively, were simultaneously observed in GCs. Compared with the glass sample, GCs have significantly intension in the green and blue upconversion fluorescence, and not significant change in the red upconversion fluorescence. Those changes are because that Ho ion in GCs locates in lower phonon energy environment than in glasses. Lower phonon energy can make the nonradiative relaxation rate reduce, which improves the green light upconversion efficiency, at the same time reduces the population of the intermediate energy level (5I7) of the red light radiation. The 2.9 μm mid-infrared light was observed in GC sample, but not in glass precursor excited by 980 nm laser diode.
|
Received: 2013-05-28
Accepted: 2013-11-20
|
|
Corresponding Authors:
ZHANG Xiao-guang
E-mail: zxgbxk_0007@sina.com
|
|
[1] Wang Yuhu,Junichi Ohwaki. Appl. Phys. Lett., 1993, 63(24), 3268. [2] Qiao X S, Fan X P, Xue Z, et al. J. Alloys Compounds, 2011, 509(14): 4714. [3] Georgescu S, Voiculescu A M, Matei C, et al. J. Luminescence, 2013, 143: 150. [4] Sontakke A D,Annapurna K. J. Appl. Phys., 2012, 112(1): 013510. [5] Driesen K, Tikhomirov V K, G?rller-Walrand C, et al. Appl. Phys. Lett.,2006, 88(7): 073111. [6] Lahoz F, Martin I R, Briones A. J. Appl. Phys., 2004, 95(6): 2957. [7] Judd B R. Phys. Rev., 1962, 127(3): 750. [8] Ofelt G S. J. Chem. Phys., 1962, 37(3): 511. [9] Carnall W T, Fields P R, Rajnak K. J. Chem. Phys., 1968, 49(10): 4424. [10] Tanimura K, Shinn M D, Sibley W A, et al. Phys. Rev. B, 1984, 30(5): 2429. |
[1] |
YANG Cheng-en1, 2, LI Meng3, LU Qiu-yu2, WANG Jin-ling4, LI Yu-ting2*, SU Ling1*. Fast Prediction of Flavone and Polysaccharide Contents in
Aronia Melanocarpa by FTIR and ELM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 62-68. |
[2] |
DUAN Ming-xuan1, LI Shi-chun1, 2*, LIU Jia-hui1, WANG Yi1, XIN Wen-hui1, 2, HUA Deng-xin1, 2*, GAO Fei1, 2. Detection of Benzene Concentration by Mid-Infrared Differential
Absorption Lidar[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3351-3359. |
[3] |
DING Han. Background-Free Development of Latent Fingerprints on Fluorescent
Substrates[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3427-3435. |
[4] |
LIU Bo-yang1, GAO An-ping1*, YANG Jian1, GAO Yong-liang1, BAI Peng1, Teri-gele1, MA Li-jun1, ZHAO San-jun1, LI Xue-jing1, ZHANG Hui-ping1, KANG Jun-wei1, LI Hui1, WANG Hui1, YANG Si2, LI Chen-xi2, LIU Rong2. Research on Non-Targeted Abnormal Milk Identification Method Based on Mid-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3009-3014. |
[5] |
WANG Chun-hui1, 2, YANG Na-na2, 3, FANG Bo2, WEI Na-na2, ZHAO Wei-xiong2*, ZHANG Wei-jun1, 2. Frequency Locking Technology of Mid-Infrared Quantum Cascade Laser Based on Molecule Absorption[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2363-2368. |
[6] |
SHEN Feng-jiao1, 3, TAN Tu2*, LU Jun1, ZHANG Sheng1, GAO Xiao-ming2, CHEN Wei-dong3. Research on Middle Infrared Laser Heterodyne Remote Sensing
Technology Based on EC-QCL[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1739-1745. |
[7] |
LIU Si-qi1, FENG Guo-hong1*, TANG Jie2, REN Jia-qi1. Research on Identification of Wood Species by Mid-Infrared Spectroscopy Based on CA-SDP-DenseNet[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 814-822. |
[8] |
YANG Cheng-en1, SU Ling2, FENG Wei-zhi1, ZHOU Jian-yu1, WU Hai-wei1*, YUAN Yue-ming1, WANG Qi2*. Identification of Pleurotus Ostreatus From Different Producing Areas Based on Mid-Infrared Spectroscopy and Machine Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 577-582. |
[9] |
LI Xiao1, CHEN Yong2, MEI Wu-jun3*, WU Xiao-hong2*, FENG Ya-jie1, WU Bin4. Classification of Tea Varieties Using Fuzzy Covariance Learning
Vector Quantization[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 638-643. |
[10] |
FENG Hai-zhi1, LI Long1*, WANG Dong2, ZHANG Kai1, FENG Miao1, SONG Hai-jiang1, LI Rong1, HAN Ping2. Progress of the Application of MIR and NIR Spectroscopies in Quality
Testing of Minor Coarse Cereals[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 16-24. |
[11] |
FAN Dan-yang1, ZHANG Xue-cheng1, GAO Jun1, WANG Jia-bin2, LÜ Hai-xia1*. Study on Specific Detection of Sulfadimethoxine Based on Aptamer-Modified Up-Conversion Fluorescent Nanomaterial[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3409-3414. |
[12] |
WANG Chong1, WANG Jing-hua1, 2, LI Dong-dong1, SHE Jiang-bo2. Preparation of Gd3+-Doped LiYF4∶Yb3+/Ho3+ Micro-Crystal and the Application Research in Anti-Counterfeiting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3581-3587. |
[13] |
ZHANG Li-gang1, MA Li-hong1*, ZHAO Su-ling2, XU Zheng2, YANG Hai-jun1, LI Chen-pu1, WANG Ke1, LIU Gui-xia1, BAI Yong-qing1, SHEN Wen-mei1. Effect of Reaction Temperature on the Luminescence and Morphology of Na3ScF6∶Yb/Er Nanocrystals[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3068-3072. |
[14] |
BAI Zi-jin1, PENG Jie1*, LUO De-fang1, CAI Hai-hui1, JI Wen-jun2, SHI Zhou3, LIU Wei-yang1, YIN Cai-yun1. A Mid-Infrared Spectral Inversion Model for Total Nitrogen Content of Farmland Soil in Southern Xinjiang[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2768-2773. |
[15] |
YANG Cheng-en1, WU Hai-wei1*, YANG Yu2, SU Ling2, YUAN Yue-ming1, LIU Hao1, ZHANG Ai-wu3, SONG Zi-yang3. A Model for the Identification of Counterfeited and Adulterated Sika Deer Antler Cap Powder Based on Mid-Infrared Spectroscopy and Support
Vector Machines[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2359-2365. |
|
|
|
|