光谱学与光谱分析 |
|
|
|
|
|
Study on Microarea Characteristics of Calcite in Archaean BIF from Wuyang Area in South Margin of North China Craton and Its Geological Significances |
LI Hong-zhong1, ZHAI Ming-guo1, ZHANG Lian-chang1, YANG Zhi-jun2, 3*, ZHOU Yong-zhang2, 3, WANG Chang-le1, LIANG Jin2, 3, LUO An2 |
1. Key Laboratory of Mineral Resource, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China 2. Department of Earth Science of Sun Yat-Sen University, Guangzhou 510275, China 3. Guangdong Provincial Key Lab of Geological Processes and Mineral Resource Survey, Guangzhou 510275, China |
|
|
Abstract The results of Raman, SEM, CL and EDS analysis show that the quartz-type BIF (banded iron formation) in Tieshanmiao formation, from Wuyang area of south North China Craton mainly contains quartz, magnetite and a small quantity of calcite. In comparison, magnetites represent the highest automorphic degree, while calcites contribute to the lowest automorphic degree. In addition, the automorphic degree of the quartz lies between magnetite and calcite. In the results of Raman analysis, the crystallinity and order degree are quite diverse in the vertical direction of the calcite band-like, and this is different from the calcite vein precipitating from the upper hydrothermal fluid. There are obvious plastic flow happening to calcite particles. During the process of plastic flow, the calcites are finally filled in the space between quartz and magnetite. This is the reason why the cross sectional shape and distributional characteristics of calcite aggregate are controlled by the particles of quartz and magnetite, which is also evidenced by the calcite filled into the slight interspace between two particles of quartz. In the Raman analysis, there are apparent differences of microarea component in calcite band-like, and this denotes that it is produced by the plastic flow and concourse process. What’s more, the calcite acts as the migration intermedium of tiny magnetite during their concourse and crystallization processes, which is witnessed by the concentrated particles of magnetite in small size in local parts of the calcites. With the help of calcite, the small magnetite particles join together to crystallize with bigger size or form aggregate of minerals.
|
Received: 2013-03-09
Accepted: 2013-05-10
|
|
Corresponding Authors:
YANG Zhi-jun
E-mail: yangzhj@mail.sysu.edu.cn
|
|
[1] Bekker A, Slack J F, Planavsky N, et al. Economic Geology, 2010, 105: 467. [2] ZHANG Lian-chang, ZHAI Ming-guo, WANG Yu-sheng, et al(张连昌,翟明国,万渝生,等). Acta Petrologica Sinica(岩石学报), 2012, 28(11): 3431. [3] Li Y L, Konhauser K O, Kappler A, et al. Earth and Planetary Science Letters, 2013, 361: 229. [4] LI Hong-zhong, ZHOU Yong-zhang, YANG Zhi-jun, et al(李红中,周永章,杨志军,等). Earth Science Frontiers(地学前缘), 2010, 17(4): 290. [5] LI Hong-zhong, ZHOU Yong-zhang, YANG Zhi-jun, et al(李红中,周永章,杨志军,等). Journal of Jilin University·Earth Science Edition(吉林大学学报·地球科学版), 2011, 41(3): 715. [6] LI Hong-zhong, ZHOU Yong-zhang, ZHANG Lian-chang, et al(李红中,周永章,张连昌,等). Acta Petrologica Sinica(岩石学报), 2012, 28(11): 3679. [7] Frost R L, Erickson K L, Weier M L, et al. Journal of Molecular Structure, 2005, 737: 173. [8] Gunasekaran S, Anbalagan G. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 68(3): 656. [9] Anderson A. Spectroscopy Letters, 1996, 29(5): 819. [10] Chakraborty D, Mahapatra S. Journal of Materials Chemistry, 1999, 9: 2953. [11] Noons R E, Devonshire R, Clapp T V, et al. Journal of Non-Crystalline Solids, 2008, 354: 3059. [12] Lipinska-Kalita K E, Gramsch S A, Kalita P E, et al. Journal of Raman Spectroscopy, 2005, 36: 938. [13] Walrafen G E, Hokmabad M S, Holmes N C. Journal of Chemical Physics, 1986, 85(2): 771. [14] Scott J F, Porto S P S. Physical Review, 1967, 161: 903. [15] Bendahan M, Lauque P, Seguin J, et al. Sensors and Actuators B: Chemical, 2003, 95: 170. [16] LIANG Feng-hua, ZENG Ling-sen, XU Zhi-qin, et al(梁凤华,曾令森,许志琴,等). Acta Petrological Sinica(岩石学报), 2006, 22(7): 1905. [17] Yang Z J, Li H Z, Peng M S, et al. Chinese Science Bulletin, 2008, 53(1): 137. [18] Shimizu I. Journal of Structural Geology, 2008, 30: 899. [19] Shibuya T, Tahata M, Kitajima K, et al. Earth and Planetary Science Letters, 2012, 321-322: 64. [20] Thomas-Keprta K L, Clemett S J, Mckay D S, et al. Geochimica et Cosmochimica Acta, 2009, 73: 6631. [21] Frei R, Polat A. Earth and Planetary Science Letters, 2007, 253: 266. [22] Li Y L, Konhauser K O, Cole D R, et al. Geology, 2011, 39(8): 707. |
[1] |
WANG Mei-li1, 2, SHI Guang-hai2*, ZHANG Xiao-hui1, YANG Ze-yu2, 3, XING Ying-mei1. Experimental Study on High-Temperature Phase Transformation of Calcite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1205-1211. |
[2] |
YE Xu1, QIU Zhi-li1, 2*, CHEN Chao-yang3, ZHANG Yue-feng1. Nondestructive Identification of Mineral Inclusions by Raman Mapping: Micro-Magnetite Inclusions in Iridescent Scapolite as Example[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2105-2109. |
[3] |
WANG Shao-na1, JIN Xing2, LIU Biao1, ZHAO Bei-bei3, LI Lan-jie3, LI Ming4, DU Hao1, 5*, ZHANG Yi1. Study on Spectral Interference in the Determination of Vanadium by ICP-OES[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(07): 2283-2288. |
[4] |
CUI Nan-nan1, 3, 4, DU Zeng-feng1, 4, ZHANG Xin1, 2, 3, 4*, LUAN Zhen-dong1, 4, XI Shi-chuan1, 3, 4, LI Lian-fu1, 3, 4, WANG Min-xiao1, 4, WANG Bing1, 4, LIANG Zheng-wei1, 3, 4, LIU Jing1, 3, 4, LIAN Chao1, 4, YAN Jun1, 4. The Application of Confocal Raman Spectroscopy in Mussels Shell[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(03): 750-754. |
[5] |
FU Wan-lu1, YUAN Xue-yin2*. Study on the Influence of Magnesium on the Phase Transition Pressures and Raman Vibrations of Calcite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(07): 2053-2058. |
[6] |
ZENG Chang-yu1, 4, ZHAO Ming-zhen2, LI Hong-zhong3, 4*, NIU Jia1, 4, ZHANG Jie-tang1, 4, HE Jun-guo1, 4*, ZHOU Yong-zhang1, 4, YANG Zhi-jun1, 4. Feieling Skarn-Type Pb-Zn Deposit in Southwest Margin of Yunkai Massif[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(09): 2558-2562. |
[7] |
ZHANG Xuan1, HU Chao1, YAN Yan1, YANG Hai-feng1, LI Jun-fang1, BAI Hua1, XI Guang-cheng1*, LIAO Jie2 . Identification of Pearl Powder Using Microscopic Infrared Reflectance Spectroscopy [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(09): 2424-2428. |
[8] |
FAN Lu-wei1*, ZHANG Yan2, HU Yang3 . Vibrational Spectra of Corallium Elatius [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(09): 2329-2331. |
[9] |
FU Pei-ge, ZHENG Hai-fei* . Raman Spectra of Aragonite and Calcite at High Temperature and High Pressure [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(06): 1557-1561. |
[10] |
XIE Chao1, 2, ZHOU Ben-gang1*, DU Jian-guo2, YI Li2, CHEN Zheng-wei2 . Characteristics of Raman Spectra of Minerals in Gouge of the Wenchuan Earthquake Fault Zone [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(06): 1562-1565. |
[11] |
LIU Chuan-jiang, ZHENG Hai-fei*. In Situ Experimental Study of Phase Transition of Calcite by Raman Spectroscopy at High Temperature and High Pressure [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(02): 378-382. |
[12] |
WANG Shi-xia1,2, ZHENG Hai-fei2* . Research on Raman Spectra of Calcite Phase Transition at High Pressure [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2011, 31(08): 2117-2119. |
[13] |
ZHU Xia-ping1,YIN Ji-xian2,CHEN Wei-dong2,HU Zi-wen1,LIANG Qing-xun1,CHEN Tie-yao1 . Determination of Fe, Ti and V in Vanadium and Titanium Magnetite by ICP-OES and Microwave-Assisted Digestion [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2010, 30(08): 2277-2280. |
[14] |
WANG Jing1,2,DENG Tong2,YANG Cai-qin1,LIN Yu-long1,WANG Wei1,WU Hai-yan1. Synthesis and Spectral Characteristic of Ga-Fe3O4 at Room Temperature[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2008, 28(03): 715-718. |
[15] |
CHEN Yong-jun1, DENG Sai-wen1, DONG De-fan2, ZHENG Miao-zi1 . A Rapid Method for the Measurement of Major and Minor Elements in Vanadium Titanium Magnetite Sample[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2005, 25(12): 2085-2087. |
|
|
|
|