光谱学与光谱分析 |
|
|
|
|
|
Terahertz Spectroscopy of DNA Nucleobases: Cytosine and Thymine |
YAN Hui1,2, FAN Wen-hui1*, ZHENG Zhuan-ping1, LIU Jia1 |
1. State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China 2. Zhongyuan University of Technology, Zhengzhou 450007, China |
|
|
Abstract The absorption features of DNA nucleobases cytosine and thymine were measured by terahertz time-domain spectroscopy (THz-TDS) from 0.1 to 3.5 THz. Our experimental results clearly show that these important biomolecules exhibit distinctive absorption features in THz region. To the best of our knowledge, the subtle absorption peak of cytosine at 2.53 THz is reported for the first time. Moreover, geometry optimizations and lattice dynamic calculations on cytosine crystal were also performed with the pseudo-potential plane wave method of density functional theory by taking periodic boundary conditions into account. All measured terahertz absorption features of cytosine were assigned successfully and its absorption spectrum was reproduced according to our calculations. Furthermore, our results show that absorption features of cytosine below 3.5 THz arise from external modes in translation and rotation motions, which are dominated by the intermolecular hydrogen bonds.
|
Received: 2013-01-05
Accepted: 2013-03-22
|
|
Corresponding Authors:
FAN Wen-hui
E-mail: fanwh@opt.ac.cn
|
|
[1] Zheng Z P, Fan W H, Yan H. Chem. Phys. Lett., 2012, 140: 525. [2] Yan H, Fan W H, Zheng Z P. Opt. Commun., 2012, 285: 1593. [3] McClure R J, Craven B M. Acta Cryst. B, 1973, 29: 1234. [4] Ozeki K, Sakabe N, Tanaka J. Acta Cryst. B, 1969, 25: 1038. [5] Portalone G, Bencivenni L, Colapietro M, et al. Acta Chem. Scand., 1999, 53: 57. [6] Fischer B M, Walther M, Jepsen P U. Phys. Med. Biol., 2002, 47: 3807. [7] Jepsen P U, Clark S J. Chem. Phys. Lett., 2007, 442: 275. [8] Clark S J, Segall M D, Pickard C J, et al. Z. Kristallogr., 2005, 220: 567. [9] Xue B, Fan W H, Yang J, et al. Proc. of SPIE, 2009, 7385: 73851U-1. [10] Wu Q, Zhang X C. Appl. Phys. Lett., 1995, 67: 3523. [11] Beetz Jr C P, Ascarelli G. Spectrochim. Acta A, 1980, 36: 299. [12] Fisher B M, Walther M, Jepsen P U. Phys. Med. Biol., 2002, 47: 3807. [13] Nishizawa J, Sasaki T, Suto K, et al. Opt. Commun., 2005, 246: 229. [14] Barker D L, Marsh R E. Acta Cryst., 1964, 17: 1581. |
[1] |
CAO Yao-yao1, 2, 4, LI Xia1, BAI Jun-peng2, 4, XU Wei2, 4, NI Ying3*, DONG Chuang2, 4, ZHONG Hong-li5, LI Bin2, 4*. Study on Qualitative and Quantitative Detection of Pefloxacin and
Fleroxacin Veterinary Drugs Based on THz-TDS Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1798-1803. |
[2] |
MIAO Shu-guang1, SHAO Dan1*, LIU Zhong-yu2, 3, FAN Qiang1, LI Su-wen1, DING En-jie2, 3. Study on Coal-Rock Identification Method Based on Terahertz
Time-Domain Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1755-1760. |
[3] |
PAN Zhao1, LI Zong-liang1, ZHANG Zhen-wei2, WEN Yin-tang1, ZHANG Peng-yang1. Defect Detection and Analysis of Ceramic Fiber Composites Based on
THz-TDS Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1547-1552. |
[4] |
ZHENG Zhuan-ping, LI Ai-dong, DONG Jun, ZHI Yan, GONG Jia-min. Terahertz Spectroscopic Investigation of Maleic Hydrazide Polymorphs[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1104-1108. |
[5] |
WU Jing-zhu1, LI Xiao-qi1, SUN Li-juan2, LIU Cui-ling1, SUN Xiao-rong1, YU Le1. Advances in the Application of Terahertz Time-Domain Spectroscopy and Imaging Technology in Crop Quality Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 358-367. |
[6] |
YAN Fang, ZHANG Jun-lin*, MAO Li-cheng, LIU Tong-hua, JIN Bo-yang. Research on Information Extraction Method of Carbohydrate Isomers Based on Terahertz Radiation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 26-30. |
[7] |
ZHENG Zhuan-ping, LI Ai-dong, LI Chun-yan, DONG Jun. Terahertz Time-Domain Spectral Study of Paracetamol[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3660-3664. |
[8] |
LIN Hong-mei1, CAO Qiu-hong1, ZHANG Tong-jun1, LI Zhao-xin1, HUANG Hai-qing1, LI Xue-min1, WU Bin2, ZHANG Qing-jian3, LÜ Xin-min4, LI De-hua1*. Identification of Nephrite and Imitations Based on Terahertz Time-Domain Spectroscopy and Pattern Recognition[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3352-3356. |
[9] |
BAI Jun-peng1, 2, LI Bin1*, ZHANG Shu-juan2, CHEN Yi-mei1. Study on Norfloxacin Concentration Detection Based on Terahertz Time Domain Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2710-2716. |
[10] |
WU Jing-zhu1, LI Xiao-qi1, SUN Li-juan2, LIU Cui-ling1, SUN Xiao-rong1, SUN Mei1, YU Le1. Study on the Optimization Method of Maize Seed Moisture Quantification Model Based on THz-ATR Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2005-2011. |
[11] |
ZHANG Tian-yao1,2, ZHANG Zhao-hui1*, ZHAO Xiao-yan1, WEI Qing-yang1, CAO Can1, YU Yang1, LI Ying1, LI Xing-yue1. Polarizability Measurements for Salicylic Acid Embedded in Polymer Matrix Using Terahertz Time-Domain Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1688-1694. |
[12] |
ZHANG Zhong-xiong1, 2, 3, ZHANG Dong-li4, TIAN Shi-jie1, 2, 3, FANG Shi-yan1, 2, 3, ZHAO Yan-ru1, 2, 3*, ZHAO Juan1, 2, 3, HU Jin1, 2, 3*. Research Progress of Terahertz Spectroscopy Technique in Food Adulteration Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1379-1386. |
[13] |
LIU Cui-ling1, YANG Yu-fei1*, TIAN Fang2, WU Jing-zhu1, SUN Xiao-rong1. Study on Quantitative Analysis of Edible Oil Peroxide Value by Terahertz Time Domain Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1387-1392. |
[14] |
CHEN Meng-qiu1, HE Ming-xia1*, LI Meng2, QU Qiu-hong2. Application of Interval Selection Methods in Quantitative Analysis of Water Content in Engine Oil by Terahertz Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1393-1397. |
[15] |
XIE Ming-zhen1, ZHANG Yang2, FU Wei-ling2*, HE Jin-chun1,3*. Microfludic Refractive Index Sensor Based on Terahertz Metamaterials[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(04): 1039-1043. |
|
|
|
|