光谱学与光谱分析 |
|
|
|
|
|
Temperature Characteristics of Huang-Ryes Factor of All-Trans-β-Carotene |
LI Shuo1, SUN Shang1, LI Zuo-wei1, QU Guan-nan1, LIU Tian-yuan1, SUN Cheng-lin1, FAN Li-mei1, 2* |
1. State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China 2. Second Hospital of Jilin University, Changchun 130041, China |
|
|
Abstract A Visible absorption and Raman spectra of all-trans-β-carotene was measured in cyclohexanol solution in the temperature range from 68 ℃ to 26 ℃. The results indicated that the visible absorption spectra are red-shifted, Raman scattering cross section increases, Huang-Ryes factor and electron-phonon coupling constants of CC bond vibration modes decreases with the temperature decreasing. The changes are interpreted using the theory of “coherent weakly damped electronic-lattice vibration model” and “effective conjugation length model”. The red shift of the absorption spectra and intensity of the Raman active are attributed to the thermal conformational change-induced increase in the effective conjugation length in all-trans-β-carotene chains. All-trans-β-carotene has strong coherent weakly damped CC bonds vibrational properties, which lead to large Raman scattering cross section in the solvent of low temperature. The electron-phonon coupling constants with dimension are used,which can easily establish relation with the Huang-Rhys factor and calculate the electron-phonon coupling constants of CC bond vibration modes. Effective conjugation length, the π-electron delocalization range and the Raman scattering cross section are described by the electron-phonon coupling constants.
|
Received: 2013-03-04
Accepted: 2013-06-20
|
|
Corresponding Authors:
FAN Li-mei
E-mail: fanlimei1971@126.com
|
|
[1] Mckenzie J L,Waid M C,Shi R Y,et al. Biomaterials, 2004, 25: 1309. [2] Choudhury K R,Sahoo Y,Prasad P N. Adv. Mater., 2005, 17(23): 2877. [3] Sugisaki M,Fujiwara M,Nair S V,et al. Phys. Rev. B, 2009,80(3): 035118. [4] Tian Y J,Zuo J,Zhang L Y,et al. Appl. Phys. B, 2007, 87(4): 727. [5] Rumi M,Zerbi G,Myllen K. J. Chem. Phys., 1997, 106: 24. [6] Paraschuk D Y,Kobbryanskii V M. Phys. Rev. Lett., 2001, 87: 207402. [7] Gierschner J,Mack H G,Lüer L,et al. J. Chem. Phys., 2002, 116(19): 8596. [8] Renge I,Grondelle R V. J. Photochem. Photobiol., A, 1996, 96: 109. [9] Qu G N, Li S, Sun C L, et al. Chin. Phys. B, 2012, 21(12): 127802. [10] Biswas N,Umapathy S. Appl. Spectrosc., 1998, 52(4): 477. [11] Dudik J M,Johndon C R,Asher S A. J. Chem. Phys., 1985, 82: 1732. [12] Henderson B,Imbusch G F. Optical Spectroscopy of Inorganic Solids. Clarendon, Oxford, 1989. [13] Peeters E,Ramos A M,Meskors S C J,et al. J. Chem. Phys., 2000, 112: 9445. [14] Hagler T W, Pakbaz K, Voss K F, et al. J. Phys. Rev. B, 1991, 44: 8652. [15] Tubio R, Dordinville R, Lam W, et al. Phys. Rev. B, 1984, 30: 6601. |
[1] |
WANG Tao, QIU Zheng-jun*, ZHANG Wei-zheng, ZHAO Yan-ru, HE Yong. Study on Non-Detective Determination of β-Carotene Content in Loquats with Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(11): 3572-3577. |
[2] |
SHEN Peng-fei1, LI Shuo1*, XU Sheng-nan1, SUN Mei-jiao1, SUN Cheng-lin1,2, LI Zuo-wei1,2 . The Effect of the Phase on Characteristic Energy of All-Trans-β-Carotene [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(01): 6-10. |
[3] |
SUN Mei-jiao1,2, WANG Kai1, XU Sheng-nan2, QU Guan-nan2, LI Shuo2, SUN Cheng-lin2, ZHOU Mi2*, LI Zuo-wei2 . Effect of Pressure on Electron-Phonon Coupling Constants of All-Trans-β-Carotene[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(05): 1302-1305. |
[4] |
WU Nan-nan1, 3, OUYANG Shun-li2*, LI Zuo-wei1*. Study on the Effect of Pressure on the Molecular Structure and π-Electron Delocalization of β-Carotene by Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(09): 2429-2432. |
|
|
|
|