光谱学与光谱分析 |
|
|
|
|
|
Application of Mid-Infrared Wavelength Tunable Laser in Glucose Determination |
YU Song-lin1, LI Da-chao1*, ZHONG Hao1, SUN Chang-yue2, XU Ke-xin1 |
1. State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China 2. Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin 300072, China |
|
|
Abstract The authors proposed a method of control and stabilization for laser emission wavelengths and power, and presented the mid-infrared wavelength tunable laser with broad emission spectrum band of 9.19~9.77 μm, half wave width of 4 cm-1, spectral resolution of 2.7×104 and max power of 800 mW with fluctuation <0.8% in the present paper. The tunable laser was employed as the light source in combination with ATR sensor for glucose measurement in PBS solution. In our experiments, absorbance at the five laser emission wavelengths, including 1 081,1 076,1 051,1 041 and 1 037 cm-1 in the 9R and 9P band of the laser emission spectrum, all correlates well with the glucose concentration (R2>0.99, SD<0.0004, P<0.000 1). Especially, the sensitivity of this laser spectroscopy system is about 4 times as high as that of traditional FTIR spectrometer.
|
Received: 2012-11-13
Accepted: 2013-01-21
|
|
Corresponding Authors:
LI Da-chao
E-mail: dchli@tju.edu.cn
|
|
[1] Guo B, Wang Y, Wang Y, et al. Journal of Biomedical Optics, 2007, 12(2): 1. [2] LU Qi-peng, DING Hai-quan, HUANG Fu-rong(卢启鹏,丁海泉,黄富荣). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2012,32(4): 930. [3] Kim Y J, Hahn S, Yoon G. Applied Optics, 2003, 42(4): 745. [4] Roychoudhury P, Harvey L M, McNeil B. Analytica Chimica Acta, 2006, 561(1-2): 218. [5] Brandstetter M, Lendl B. Sensors and Actuators B: Chemical, 2012, 170(31): 189. [6] Kolhed M, Haberkorn M, Pustogov V, et al. Vibrational Spectroscopy, 2002, 29: 283. [7] Brandsuetter M, Genner A, Anic K, et al. Procedia Engineering, 2010, 5: 1001. [8] Meinke M, Müller G, Albrecht H, et al. Journal of Biomedical Optics, 2008, 13(1): 1~6. [9] Damm U, Kondepati V R, Heise H M. Vibrational Spectroscopy, 2007, 43(1): 184. [10] Gotshal Y, Adam I, Katzir A. Proc. 1998, SPIE, 3262, 192. [11] Vrancic C, Fomichova A, Gretz N, et al. Analyst, 2011, 136(6): 1192. [12] Raichlin Y, Katzir A. Applied Spectroscopy, 2008, 62(2): 55. |
[1] |
YANG Cheng-en1, 2, LI Meng3, LU Qiu-yu2, WANG Jin-ling4, LI Yu-ting2*, SU Ling1*. Fast Prediction of Flavone and Polysaccharide Contents in
Aronia Melanocarpa by FTIR and ELM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 62-68. |
[2] |
LI Yu1, ZHANG Ke-can1, PENG Li-juan2*, ZHU Zheng-liang1, HE Liang1*. Simultaneous Detection of Glucose and Xylose in Tobacco by Using Partial Least Squares Assisted UV-Vis Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 103-110. |
[3] |
DUAN Ming-xuan1, LI Shi-chun1, 2*, LIU Jia-hui1, WANG Yi1, XIN Wen-hui1, 2, HUA Deng-xin1, 2*, GAO Fei1, 2. Detection of Benzene Concentration by Mid-Infrared Differential
Absorption Lidar[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3351-3359. |
[4] |
LIU Bo-yang1, GAO An-ping1*, YANG Jian1, GAO Yong-liang1, BAI Peng1, Teri-gele1, MA Li-jun1, ZHAO San-jun1, LI Xue-jing1, ZHANG Hui-ping1, KANG Jun-wei1, LI Hui1, WANG Hui1, YANG Si2, LI Chen-xi2, LIU Rong2. Research on Non-Targeted Abnormal Milk Identification Method Based on Mid-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3009-3014. |
[5] |
WANG Chun-hui1, 2, YANG Na-na2, 3, FANG Bo2, WEI Na-na2, ZHAO Wei-xiong2*, ZHANG Wei-jun1, 2. Frequency Locking Technology of Mid-Infrared Quantum Cascade Laser Based on Molecule Absorption[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2363-2368. |
[6] |
SHEN Feng-jiao1, 3, TAN Tu2*, LU Jun1, ZHANG Sheng1, GAO Xiao-ming2, CHEN Wei-dong3. Research on Middle Infrared Laser Heterodyne Remote Sensing
Technology Based on EC-QCL[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1739-1745. |
[7] |
LIU Rong1, 2, WANG Miao-miao1, 2 , SUN Ze-yu1, 2, CHEN Wen-liang1, 2, LI Chen-xi2*, XU Ke-xin1, 2. Research on Temperature Disturbance of Glucose Solution With
Two-Trace Two-Dimensional Correlation Spectrum Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1051-1055. |
[8] |
FENG Yu, ZHANG Yun-hong*. Rapid ATR-FTIR Principal Component Analysis of Commercial Milk[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 838-841. |
[9] |
LIU Si-qi1, FENG Guo-hong1*, TANG Jie2, REN Jia-qi1. Research on Identification of Wood Species by Mid-Infrared Spectroscopy Based on CA-SDP-DenseNet[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 814-822. |
[10] |
XU Wei-xin, XIA Jing-jing, WEI Yun, CHEN Yue-yao, MAO Xin-ran, MIN Shun-geng*, XIONG Yan-mei*. Rapid Determination of Oxytetracycline Hydrochloride Illegally Added in Cattle Premix by ATR-FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 842-847. |
[11] |
QIAO Lu1, LIU Rui-na1, ZHANG Rui1, ZHAO Bo-yu1, HAN Pan-pan1, 2, ZHOU Chun-ya1, 3, ZHANG Yu-qing1, 4, DONG Cheng-ming1*. Analysis of Spectral Characteristics of Soil Under Different Continuous Cropping of Rehmannia Glutinosa Based on Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 541-548. |
[12] |
YANG Cheng-en1, SU Ling2, FENG Wei-zhi1, ZHOU Jian-yu1, WU Hai-wei1*, YUAN Yue-ming1, WANG Qi2*. Identification of Pleurotus Ostreatus From Different Producing Areas Based on Mid-Infrared Spectroscopy and Machine Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 577-582. |
[13] |
LI Xiao1, CHEN Yong2, MEI Wu-jun3*, WU Xiao-hong2*, FENG Ya-jie1, WU Bin4. Classification of Tea Varieties Using Fuzzy Covariance Learning
Vector Quantization[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 638-643. |
[14] |
FENG Hai-zhi1, LI Long1*, WANG Dong2, ZHANG Kai1, FENG Miao1, SONG Hai-jiang1, LI Rong1, HAN Ping2. Progress of the Application of MIR and NIR Spectroscopies in Quality
Testing of Minor Coarse Cereals[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 16-24. |
[15] |
OU Li-juan1*, LI Jing1, ZHANG Chao-qun1, LUO Jian-xin1, WEI Ji1, WANG Hai-bo2*, ZHANG Chun-yan1. Redox-Controlled Turn-on Fluorescence Sensor for H2O2 and Glucose Using DNA-Template Gold Nanoclusters[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3757-3761. |
|
|
|
|