光谱学与光谱分析 |
|
|
|
|
|
Low Temprature Properties of T Shape Photoacoustic Cell and Applications |
NIU Ming-sheng1, 2, LIU Qiang1, 2, WANG Gui-shi1,2, YUAN Yi-qian2, HUANG Wei1, ZHANG Wei-jun1, GAO Xiao-ming1, 2* |
1. Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China 2. Atmospheric Optics Key Laboratory, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China |
|
|
Abstract A homemade low-temperature T shape photoacoustic system (PAS) in the range from 0 to -100 ℃ is well established. The mode distribution, the temperature dependence of the resonant frequency, Q-factor and the sensitivity of the PAS were investigated. The measurement of the carbon dioxide in the range from 0 to -100 ℃ showed that the system can be used in trace gas detection under low-temperature. The results show that the PAS can be used to study the atmospheric molecules continuous absorption at low-temperature.
|
Received: 2012-07-18
Accepted: 2012-10-30
|
|
Corresponding Authors:
GAO Xiao-ming
E-mail: xmgao@aiofm.ac.cn
|
|
[1] Bell A G. Am. J. Sci., 1880, 20: 305. [2] Martin P. Chemical Society Reviews, 2002, 31: 201. [3] Sigrist M, Bartlome R, Marinov D, et al. Applied Physics B: Lasers and Optics, 2008, 90: 289. [4] van Herpen M, Ngai A, Bisson S,et al. Applied Physics B: Lasers and Optics, 2006, 82: 665. [5] Pushkarsky M, Dunayevskiy I, Prasanna M, et al. Proceedings of the National Academy of Sciences, 2006, 103: 19630. [6] Baumann B, Wolff M, Kost B, et al. Applied Optics, 2007, 46: 1120. [7] Baumann B, Kost B, Groninga H, et al. Review of Scientific Instruments, 2006, 77: 044901-1. [8] Li D Y, Vipperman J S. J. Acoust. Soc. Am., 2004, 116(5): 2788. [9] Kinsler L E, Frey A R, Coppens A B, et al. Fundamentals of Acoustics (2nd). New York: New York Press, 1962. 201. [10] Birkhuser Verlag Basel. Journal of Applied Mathematics and Physics, 1978, 29: 489. [11] Lawrence E Kinsler, Austin R Frey. Fundamentals of Acoustics. Hamilton: Hamilton Press, 2000. 210. [12] Natasha Lopes, Shailesh Khanolkar. World Journal of Scinece and Technology, 2011, 1: 39. [13] Toulukian Y S, Ho C Y. Thermophysical Properties of Matter. New York: Plenum Press, 1972, 413. [14] Vesovic V, Wakeham W A, Olchowy G A,et al. J. Phys. Chem. Ref. Data, 1990, 19: 767. [15] Mikló s Szakáll, János Csikós, Zoltán Bozóki, et al. Infrared Physics & Technology, 2007, 51: 113. |
[1] |
GUO Na1, 2, WANG Xin-chen3*. Different Types of Deposits in Porphyry Metallogenic System Identified by 2 200 nm Al—OH Group Vibration[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3492-3496. |
[2] |
LIU Hong-bo, SHI Xue-shun, ZHUANG Xin-gang, ZHANG Peng-ju, LIU Chang-ming, WANG Heng-fei. Simulation and Experimental Measurement of Cryogenic Radiometer Cavity With Different Structures[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 654-659. |
[3] |
LONG Chu1,HE Li-yan1,HOU Shun-yu1,ZHAO Bo-wen2,TU Cai2,LÜ Xiao-yu2. The Characteristics of Hydrous Mineral Inclusions in Low-Temperature Heated Corundum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1530-1536. |
[4] |
WU Zhi-feng, DAI Cai-hong, ZHAO Wei-qiang, XU Nan, LI Ling, WANG Yan-fei, LIN Yan-dong. Spectral Irradiance Responsivity Calibration Using Tunable Lasers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 853-857. |
[5] |
LIU Hong-bo1, SHI Xue-shun1,XU Wen-bin2, LIU Chang-ming1, LIU Hong-yuan1, WANG Heng-fei1. Long-Wave Infrared Absolute Spectral Responsivity Scale by Using an Absolute Cryogenic Radiometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3680-3685. |
[6] |
LI Xin1, SU Cheng-zhi1,2*, YU Dan-yang1, SHENG Yu-bo1, CHANG Chuan1, SHI Lei1, JIANG Ji-guang1. Study on the Influence of Wavelength and Low Temperature on COD Detection by Ultraviolet Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(08): 2403-2408. |
[7] |
LIU Li-xian1, 2, 3, HUAN Hui-ting1, 2, Mandelis Andreas2, SHAO Xiao-peng1*. Multiple Dissolved Gas Analysis in Transformer Oil Based on Fourier Transform Infrared Photoacoustic Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(03): 684-687. |
[8] |
ZOU Zhi-yong1, WU Xiang-wei1, CHEN Yong-ming2, BIE Yun-bo1, WANG Li1, LIN Ping2*. Investigation of Hyperspectral Imaging Technology for Detecting Frozen and Mechanical Damaged Potatoes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(11): 3571-3578. |
[9] |
ZHANG Cong1,2, SU Bo1*, ZHANG Hong-fei1, WU Ya-xiong1, HE Jing-suo1, ZHANG Cun-lin1. Study of Low-Temperature Gallium Arsenide Thin Film Photoconductive Antenna in THz On-Chip System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(10): 3308-3312. |
[10] |
ZHUANG Xin-gang1, 2, LIU Hong-bo1, 2, ZHANG Peng-ju1, 2, SHI Xue-shun1, 2, LIU Chang-ming1, 2, LIU Hong-yuan1, 2, WANG Heng-fei1, 2. Absorptance Analysis of Blackbody Cavity in Cryogenic Radiometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(07): 2018-2022. |
[11] |
ZHANG Wei, CHEN Lei*, SONG Peng, ZENG Wen, LIU Yu, FENG Chao, YANG Cong. Experimental Research on Argon Atomic Emission Spectroscopy at Amospheric Pressure Condition[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(12): 3678-3682. |
[12] |
FAN Hua1, YAO Gao-yang2, LIU Wei3, XING Zi-hui4, SHI Jin-ming5, GAO Bai1*, CHEN Yang6. Experimental Study on the Treatment of Mercury Contained Soil by Thermal Analytical Low Temperature Plasma Based on Cold Atomic Absorption Spectrophotometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2279-2283. |
[13] |
YANG Hong-jun, CHAI Xiao-li, WANG Min, LI Bing*. Study on Phase Transition Process of NaCl-H2O and NaCl-KCl-H2O at Low Temperature with in Situ XRD[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 953-957. |
[14] |
LI Zhi-gang, LI Fu-tian*. A New Generation High-Temperature Blackbody and Synchrotron Radiation Facility and Its Application in Extraterrestrial Solar Spectral Irradiance Measurements[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(10): 3242-3248. |
[15] |
CHEN Xiao-lan1, ZHOU Zhen-zhu1, 2*, HAN Zuo-zhen1, LIN Yu-xiang1. The Constraints on the Method of Using Cryogenic Raman Spectroscopy to Determine the Salinities of Fluid Inclusions[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(08): 2446-2451. |
|
|
|
|