光谱学与光谱分析 |
|
|
|
|
|
Quantitative Determination of Trace Heavy Metals in Polluted Soil by Laser Induced Breakdown Spectroscopy |
WU Wen-tao, MA Xiao-hong*, ZHAO Hua-feng, ZHENG Ze-ke, ZHANG Min, LIAO Yan-biao |
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China |
|
|
Abstract Based on laser induced breakdown spectroscopy data analysis, a quantitative determination method of elements was introduced. This method takes the advantage of Fourier analysis to study different part of the spectrum-white noise, thermal radiation and emission spectral lines. Through band-pass filter, emission spectral lines and most noise were separated, only a little white noise was missed. By calculated similarity between detected line and its corresponding unit characteristic line, convolution intensity was introduced to measure the detected line intensity. With Cu 324.75 nm as the analysis line and Ti 337.28 nm as the base line, the way of separating spectrum mentioned before was carried out to detect trace Cu pollution in soil. Results contained two bright spots. First, The correlation coefficient between Cu concentration and the spectral intensity was up to 0.997 9. Last but not the least, the detectability of Cu in soil was 44 mg·kg-1, which is below the trace element thresholds for Class 2 soil used in the environmental quality standard for soil in China. At the same time, the relative error is always below 10%. Therefore the feasibility of this method for portable and instant detection of heavy metals in polluted soil was verified.
|
Received: 2010-03-28
Accepted: 2010-06-30
|
|
Corresponding Authors:
MA Xiao-hong
E-mail: maxh@tsinghua.edu.cn
|
|
[1] Capitelli F, Colao F, Provenzano M R, et al. Geoderma, 2002, 106(1): 45. [2] TANG Xiao-shuan, LI Chun-yan, ZHU Guang-lai, et al(唐晓闩,李春燕,朱光来,等). Chinese J. Lasers (中国激光), 2004, 31(6): 687. [3] Sirven J B, Bousquet B, Canioni L, et al. Analytical and Bioanalytical Chemistry, 2006, 385(2): 256. [4] Samek O, Beddows D C S, Kaiser J, et al. Opt. Engng., 2000, 39(8): 2248. [5] Lo K M, Cheung N H. Appl. Spectroscopy, 2002, 56(6): 682. [6] David W Hahn, Prasoon K Diwakar, Philip B Jackson. CLEO 2008, CMQ5, 2008. [7] Corsi M, Cristoforetti G, Palleschi V, et al. Eur. Phys. J. D, 2001, 13:373. [8] YU Le, ZHAO Hua-feng, MA Xiao-hong, et al(于 乐,赵华凤,马晓红,等). Laser Journal(激光杂志), 2008, 29(5): 64. [9] Sarzyński A, Skrzeczanowski W, Marczak J, et al. Proc. of SPIE, 2007, 6618:66180V. [10] Aragón C, Aguilera J A. Spectrochimica Acta Part B, 2008, 63: 893. [11] Mario Capitell, Francesco Capitelli, Alexander Eletskii. Spectrochimica Acta Part B, 2000, 55(2): 559. [12] Kim D E, Yoo K J, Park H K, et al. Appl. Spectroscopy, 1997, 51(1): 22. [13] XIN Ren-xuan(辛仁轩). Plasma Emission Spectrum Analyze(等离子体发射光谱分析). Beijing: Chemical Industry Press(北京:化学工业出版社), 2005. 117. [14] Huang Jer-Shing,Ke Ching-Bin, Huang Li-Shing, et al. Spectrochimica Acta Part B, 2002, 57(1): 35.
|
[1] |
LIANG Ye-heng1, DENG Ru-ru1, 2*, LIANG Yu-jie1, LIU Yong-ming3, WU Yi4, YUAN Yu-heng5, AI Xian-jun6. Spectral Characteristics of Sediment Reflectance Under the Background of Heavy Metal Polluted Water and Analysis of Its Contribution to
Water-Leaving Reflectance[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 111-117. |
[2] |
CHENG Hui-zhu1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, MA Qian1, 2, ZHAO Yan-chun1, 2. Genetic Algorithm Optimized BP Neural Network for Quantitative
Analysis of Soil Heavy Metals in XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3742-3746. |
[3] |
LIU Hong-wei1, FU Liang2*, CHEN Lin3. Analysis of Heavy Metal Elements in Palm Oil Using MP-AES Based on Extraction Induced by Emulsion Breaking[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3111-3116. |
[4] |
MA Qian1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, CHENG Hui-zhu1, 2, ZHAO Yan-chun1, 2. Research on Classification of Heavy Metal Pb in Honeysuckle Based on XRF and Transfer Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2729-2733. |
[5] |
KANG Ying1, ZHUO Kun1, LIAO Yu-kun1, MU Bing1, QIN Ping2, LI Qian1, LUAN Xiao-ning1*. Quantitative Determination of Alcohol Concentration in Liquor Based on Polarized Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2768-2774. |
[6] |
CHENG Fang-beibei1, 2, GAN Ting-ting1, 3*, ZHAO Nan-jing1, 4*, YIN Gao-fang1, WANG Ying1, 3, FAN Meng-xi4. Rapid Detection of Heavy Metal Lead in Water Based on Enrichment by Chlorella Pyrenoidosa Combined With X-Ray Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2500-2506. |
[7] |
ZHANG Xia1, WANG Wei-hao1, 2*, SUN Wei-chao1, DING Song-tao1, 2, WANG Yi-bo1, 2. Soil Zn Content Inversion by Hyperspectral Remote Sensing Data and Considering Soil Types[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2019-2026. |
[8] |
TANG Quan1, ZHONG Min-jia2, YIN Peng-kun2, ZHANG Zhi3, CHEN Zhen-ming1, WU Gui-rong3*, LIN Qing-yu4*. Imaging of Elements in Plant Under Heavy Metal Stress Based on Laser-Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1485-1488. |
[9] |
LI Shuai-wei1, WEI Qi1, QIU Xuan-bing1*, LI Chuan-liang1, LI Jie2, CHEN Ting-ting2. Research on Low-Cost Multi-Spectral Quantum Dots SARS-Cov-2 IgM and IgG Antibody Quantitative Device[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1012-1016. |
[10] |
ZHANG Chao1*, SU Xiao-yu1, XIA Tian2, YANG Ke-ming3, FENG Fei-sheng4. Monitoring the Degree of Pollution in Different Varieties of Maize Under Copper and Lead Stress[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1268-1274. |
[11] |
CHEN Ping-yun1, KANG Xiu-tang1, GUO Liang-qia2*. Study of Emission Characteristics of Particulate Arsenic, Cadmium, Copper and Lead Derived From Burning of Tibetan Incenses by
ICP-OES Method With Microwave Digestion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 419-425. |
[12] |
ZHU Zhao-zhou1, YAN Wen-rui1, 2, ZHANG Zi-jing1, 2. Research of Pollution Characteristics, Ecological and Health Risks of Heavy Metals in PM2.5 From Fireworks by Inductively Coupled
Plasma-Mass Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 644-650. |
[13] |
HU Xiao-yun1, BIAN Xi-hui1, 2, 3*, XIANG Yang2, ZHANG Huan1, WEI Jun-fu1. Quantitative Analysis of Single Component Oils in Quinary Blend Oil by Near-Infrared Spectroscopy Combined With Chemometrics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 78-84. |
[14] |
TANG Ju1, 2, DAI Zi-yun2*, LI Xin-yu2, SUN Zheng-hai1*. Investigation and Research on the Characteristics of Heavy Metal Pollution in Children’s Sandpits Based on XRF Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3879-3882. |
[15] |
SHANG Chao-nan1, XIE Yan-li2, GAO Xiao3, ZHOU Xue-qing2, ZHAO Zhen-dong2, MA Jia-xin1, CUI Peng3, WEI Xiao-xiao3, FENG Yu-hong1, 2*, ZHANG Ming-nan2*. Research on Qualitative and Quantitative Analysis of PE and EVA in Biodegradable Materials by FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3380-3386. |
|
|
|
|