光谱学与光谱分析 |
|
|
|
|
|
Effect of Rubrene Position on the EL Performance of the Device and Analysis of the Exciton Recombination Zone |
XU Deng-hui1,LI Xiong1,WANG Xiu-e1,ZHAO Ci1,ZHAO Jia1,DENG Zhen-bo2,Lü Zhao-yue2,CHEN Zheng2 |
1. School of Mechanical Engineering, Beijing Technology and Business University, Beijing 100037, China 2. Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China |
|
|
Abstract By using an ultrathin 5,6,11,12-tetraphenylnaphthacene (rubrene) layer deposited on the top of host materials,the influence of rubrene layer position on the electroluminescence (EL) spectra of organic light-emitting devices (OLEDs) was studied.When the rubrene layer is located at the interface between N,N’-diphenyl-N,N’-bis(1-naphthyl)-(1,18-biphenyl)-4,4’-diamine (NPB) and tris(8-hydroxyquinoline) aluminum (AlQ) layer, EL luminescence of the device is nearly coming from rubrene emission. From the analysis of the EL spectra of the devices with different rubrene layer position, the solely contribution of rubrene and AlQ, respectively, to the luminescence of the devices is determined by spectra unmixing. Based on the analysis, the exciton length in AlQ layer is determined to be about 15-20 nm. The exciton transport and recombination characteristics are also discussed in this work.
|
Received: 2010-05-18
Accepted: 2010-08-22
|
|
Corresponding Authors:
XU Deng-hui
E-mail: xudh@th.btbu.edu.cn
|
|
[1] Tang C W,Vanslyke S A. Appl. Phys. Lett., 1987, 51(12): 913. [2] Thomschke M, Nitsche R, Furno M, et al. Appl. Phys. Lett., 2009, 94: 083303. [3] Matusumura M,Furukawa T. Jpn. J. Appl. Phys., 2001, 40: 3211. [4] Xu D, Deng Z, Li X, et al. Displays, 2008, 29: 419. [5] Tang C W, VanSlyke S A,Chen C. H. J. Appl. Phys., 1989, 85(9): 3610. [6] Mori T, Miyachi K,Mizutani T. J. Phys. D: Appl. Phys., 1995, 28: 1461. [7] Hao J, Deng Z, Yang S. Displays, 2006, 27: 108. [8] Bulovic V, Shoustikov A, Baldo M A. Chem. Phys. Lett., 1998, 287: 455. [9] Benor A, Takizawa S, Chen P, et al. Appl. Phys. Lett., 2009, 94: 193301. [10] Lee J-H, Huang C-L, Hsiao C-H, et al. Appl. Phys. Lett., 2009, 94: 223301. [11] Zhang D-D, Feng J, Liu Y-F, et al. Appl. Phys. Lett., 2009, 94: 223306.
|
[1] |
WANG Tao1, 2, LIU Jian-xun2, GE Xiao-tian2, WANG Rong-xin2, SUN Qian2, NING Ji-qiang2*, ZHENG Chang-cheng3*. Fine Photoluminescence Spectroscopic Characterization of Interfacial Effects on Emission Properties of InGaN/GaN Multiple Quantum Wells in a Blue-Light Laser Diode Structure[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1179-1185. |
[2] |
ZHAO Yuan, LÜ Zhao-yue*, DENG Jian, ZENG Guo-qing. The Emissive Mechanism of C545T Thin Layer at the Exciplex and Non-Exciplex Interfaces[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3711-3715. |
[3] |
YANG Jian1, 2, ZHAO Su-ling1, 2*, SONG Dan-dan1, 2, XU Zheng1, 2, QIAO Bo1, 2, WANG Peng1, 2, WEI Peng1, 2. Highly Efficient Solution Processed Blue Thermally Activated Delayed Fluorescent Organic Light-Emitting Devices with a Mixed Hole Injection Layer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(04): 1028-1033. |
[4] |
HOU Xue-shun1, WANG Ying-wei1, WANG Dao-wei1, XIAO Si1, HE Jun1*, GU Bing2*. The Variable Nonlinear Absorption and Carrier Dynamics in GaN Thin Film under the Excitation of Femtosecond Pulses at Ultraviolet Wavelength[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3781-3785. |
[5] |
WANG Guang-hua1,2, ZHAO Hui-qiong1,2, DENG Rong-bin1, DUAN Yu1,2, SUN Hao1, ZHANG Xiao-dan1,2, ZHOU Qin1, QIAN Jin-mei1, WAN Rui-min1,2, JI Hua-xia1, JI Rong-bin2. Research on the Preparation and Chromaticity Coordinates Shift Mechanism of Organic White Light Top-Emitting Devices[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(11): 3758-3763. |
[6] |
LU Li-ping, LI Ming, LIU Gui-ling, WEI Liang-shu, WU Fang* . Study on Absorption Spectra of Lutein Aggregate with Experimental Analysis and Theoretical Calculation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(10): 3287-3291. |
[7] |
ZHANG Wei, ZHANG Fang-hui*, HUANG Jin . Effect of Spacer on Red and Green Phosphorescent Organic Light-Emitting Devices[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(02): 322-326. |
[8] |
ZHANG Yu1,2, LIU Zheng-jun1* . Application of Lock-in Photocarrier Radiometry in Solar Cells [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(10): 2791-2794. |
[9] |
ZHANG Wei, ZHANG Fang-hui*, HUANG Jin . Properties of Phosphorescent Organic Light-Emitting Diodes with Different Doping Order on Light Emitting Layer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(07): 1763-1766. |
[10] |
MA Zhu1, YU Jun-sheng1*, JIANG Long-feng1, DONG Shou-cheng2, LI Zhen2*, HU Song3 . Spectra Characteristics and Electroluminescence Performance of Novel Fluorene Derivatives with Aggregation Fluorescence Enhancement[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(04): 935-939. |
[11] |
LIU Sheng-qiang1, YU Jun-sheng1*, ZENG Yan-bo1, ZHAO Juan1, DU Chun-lei2 . Spectral Characteristics of White Organic Light-Emitting Devices Based on Phosphorescent System of Three Iridium Chelates [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(03): 636-641. |
[12] |
XIE Xing, CHEN Zhi-jian*, XIAO Li-xin, QU Bo, GONG Qi-huang* . Organic Solar Cell Based On Alkylthiol/Au Self-assembly Film As Buffer Layer [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(02): 289-292. |
[13] |
ZHANG Chun-yu1,2, WANG Cheng3, XIAO Li-guang1, LU Jing-bin2, WANG Hong-jie1, KONG Ling-wei1 . Spectral Analysis of Organic/Microcavity Organic Light-Emitting Devices with the Change in Thickness of Organic Layer [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(01): 69-73. |
[14] |
LI Juan1, 2, WANG Hua1, 2, SONG Chun-li1, 2, ZHANG Cun1, 2, ZHANG Jun-ping1, 2, HAO Yu-ying1, 3, XU Bing-she1, 2* . Research on Synthesis and Luminous Mechanism of a Soluble Blue-Light Luminescence Material Derived from Carbazole [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2011, 31(08): 2071-2075. |
[15] |
XU Deng-hui . Fabrication and Analysis of the Organic Light-Emitting Diode with Liquid Host Material [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2011, 31(05): 1204-1207. |
|
|
|
|