光谱学与光谱分析 |
|
|
|
|
|
Studies on Application and Mechanism of Energy Transfer System of Acridine Orange(AO)-Rhodamine B(RB) Dimer in the Determination of DNA |
GAO Feng, ZHU Chang-qing, WANG Lun |
College of Chemistry and Material Science, Anhui Normal University, Wuhu 241000, China |
|
|
Abstract Not only dye monomer is the form of energy transfer but also dye dimer is the effective form of energy transfer. In this work, the energy transfer system of acridine orange(AO)-rhodamine B(RB) dimer was built for the determination of DNA as fluorescence probe. At the same time, the mechanism was also considered. Under the optimum experimental conditions, the linear range of this assay was 0.33-1.33 mg·L-1 for fish sperm DNA and 0.33-3.33 mg·L-1 for calf thymus DNA, the detection limit was 1.63×10-3 mg·L-1 for fish sperm DNA and 1.52×10-3 mg·L-1 for calf thymus DNA, respectively. The RSD for the determination of 1.00 mg·L-1 DNA was 2.40% for fsDNA and 2.00% for ctDNA, respectively. The method was used for the determination of DNA in synthetic samples with satisfied results.
|
Received: 2002-09-16
Accepted: 2003-01-06
|
|
Corresponding Authors:
WANG Lun
|
|
Cite this article: |
GAO Feng,ZHU Chang-qing,WANG Lun. Studies on Application and Mechanism of Energy Transfer System of Acridine Orange(AO)-Rhodamine B(RB) Dimer in the Determination of DNA [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2004, 24(01): 85-88.
|
|
|
|
URL: |
http://www.gpxygpfx.com/EN/Y2004/V24/I01/85 |
[1] ZHANG Zhu-jun(章竹君). Chinese Journal of Analysis Laboratory(分析试验室), 1993, 12(1): 25. [2] Zhang Z Z, Seite W R. Anal. Chim. Acta, 1990, 236: 251. [3] Wei A P, Blumentheal Herron J N. Anal. Chem., 1994, 66: 1500. [4] ZHANG Hong-man, GUO Xiang-qun, LI Fang et al(张红漫,郭祥群,李 芳等). J. Xiamen University(厦门大学学报)(自然科学版), 1997, 36(6): 891. [5] HE Xi-wen, TANG Zhi-xin, DING Gui-huang et al(何锡文,唐志新,丁贵黄等). Chinese J. Anal. Chem.(分析化学),1994, 24(4):332. [6] WU Shi-kang, JIANG Yong-cai(吴世康,姜永才). Acta Chimica Sinica(化学学报), 1982, 40(10): 939. [7] Kalyanasundaram K. Chem. Soc. Rev., 1978, (7): 453. [8] Gratvel M, Thomes J K. J. Chem. Soc., 1973, 95: 6885. [9] Kusumoto Y, Sato H. Chem. Phys. Lett., 1979, 69: 13. [10] ZHAO Guo-xi(赵国玺). Physical Chemistry of Surfactant (2<sup>nd</sup> Ed.)(表面活性剂物理化学(第二版)). Beijing(北京):Peking University Press(北京大学出版社), 1991. 165. [11] GUO Xiang-qun, LI Fang, XU Jin-gou et al(郭祥群,李 芳,许金钩等). Chem. J. Chinese Universities(高等学校化学学报),1996, 17(9):1361.
|
[1] |
CONG Jian-han1, LUO Yun-jing1*, QI Xiao-hua2, ZOU Ming-qiang2, KONG Chen-chen1. Sensitive Detection of Uric Acid Based on BSA Gold Nanoclusters by Fluorescence Energy Resonance Transfer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 483-489. |
[2] |
WAN Xiao-ming1, 2, ZENG Wei-bin1, 2, LEI Mei1, 2, CHEN Tong-bin1, 2. Micro-Distribution of Elements and Speciation of Arsenic in the Sporangium of Pteris Vittata[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 478-482. |
[3] |
LUO Lin-lin1, 2, 3, NIU Jing-jing3, MO Bei-xin1, 2, LIN Dan-ying3, LIU Lin1, 2*. Advances in the Application of Förster Resonance Energy Transfer and Fluorescence Lifetime Imaging Microscopy (FRET-FLIM) Technique in Life Science Research[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(04): 1023-1031. |
[4] |
LI Meng-yao1, 2, WANG Shu-ya1, XIE Yun-feng1, LIU Yun-guo3*, ZHAI Chen1*. Detection of Protease Deterioration Factor in Tomato by Fluorescence Sensor Array[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3477-3482. |
[5] |
YAO Dong-mei1, 2, LU Shan-shan1, WEN Gui-qing1, LIANG Ai-hui1, JIANG Zhi-liang1*. Determination of Trace Urea by Resonance Rayleigh Scattering-Energy Transfer Spectroscopy Coupled With Polystyrene Nanoprobe and Dimethylglyoxime Reaction[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3590-3593. |
[6] |
JIA Hui-jie, ZHU Ning, GAO Yuan-yuan, WANG Ya-qi, SUO Quan-ling*. Effect of Substituent Structure of Benzothiazole Probe on Recognition to Metal Ion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3594-3598. |
[7] |
ZHU Dan-dan1, 2, QU Peng2*, SUN Chuang2, YANG Yuan2, LIU Dao-sheng1*, SHEN Qi3, HAO Yuan-qiang2*. A Benzothiazole-Based Long-Wavelength Fluorescent Probe for Dual-Response to Viscosity and H2O2[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(06): 1775-1779. |
[8] |
MA Hong-yan,WANG Jing-yuan, ZHANG Yue-cheng*, YANG Xiao-jun, CHEN Xiao-li. Determination of Dopamine by Fluorescence Quenching-Recovery Method with Peanut Carbon Quantum Dots as Probe[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(04): 1093-1098. |
[9] |
LIAN Jie1, REN Yi-fei2, YANG Rui-qin1*, HAO Hong-xia3. Rapid Detection System of 2,4,6-Trinitrophenol (TNP) Based on Fluorescent Probe[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(03): 804-808. |
[10] |
ZHANG Wen-yue1, HAO Wen-hui1, ZHAO Jing2, WANG Yu-cong1*. Label-Free Detection of MicroRNA Based on Fluorescence Resonance Energy Transfer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(01): 131-135. |
[11] |
CHEN Shuo-ran, HUANG Su-qin, HAN Peng-ju*, YE Chang-qing, SONG Sa-sa, WANG Xiao-mei*. Preparation of 9,10-Diphenylanthracene Derivative and Its Detection for Cu2+ by Up/Down-Conversion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(12): 3769-3775. |
[12] |
SHI Ji-yong, LI Wen-ting, HU Xue-tao, SHI Yong-qiang, ZOU Xiao-bo*. A New Ratiometric Fluorescence Probe Based on CuNCs and CQDs and Its Application in the Detection of Hg2+[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(12): 3925-3931. |
[13] |
CHEN Shuo-ran1, ZHENG Dao-yuan1, LIU Teng1, YE Chang-qing1*, SONG Yan-lin2. Ratiometric Fluorescent Temperature Probe Based on Up/Down-Conversion Luminescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(10): 3088-3095. |
[14] |
HU Xue-tao, SHI Ji-yong, LI Yan-xiao, SHI Yong-qiang, LI Wen-ting, ZOU Xiao-bo*. Sensitive Determination of Trypsin in Urine Using Carbon Nitride Quantum Dots and Gold Nanoclusters[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(09): 2901-2906. |
[15] |
ZHU Jun, LI Ye-ping, ZOU Jin-shan, CHEN Fang-yuan, LIU Fu-ming, YAN Xing-rong, TAN Yu-xin, ZHAI Hao-ying*. Determination of Pefloxacin by the Fluorescence Resonance Energy Transfer Effect Between Carbon Dots-Eosin B[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(08): 2554-2560. |
|
|
|
|