光谱学与光谱分析 |
|
|
|
|
|
Spectral Navigation Technology and Its Application in Positioning the Fruits of Fruit Trees |
YU Xiao-lei1, 2, ZHAO Zhi-min3* |
1. College of Automation Engineering, University of Aeronautics and Astronautics, Nanjing 210016, China 2. Institute for Technology, Research & Innovation, Deakin University, Geelong VIC 3217, Australia 3. College of Science, University of Aeronautics and Astronautics, Nanjing 210016, China |
|
|
Abstract An innovative technology of spectral navigation is presented in the present paper. This new method adopts reflectance spectra of fruits, leaves and branches as one of the key navigation parameters and positions the fruits of fruit trees relying on the diversity of spectral characteristics. The research results show that the distinct smoothness as effect is available in the spectrum of leaves of fruit trees. On the other hand, gradual increasing as the trend is an important feature in the spectrum of branches of fruit trees while the spectrum of fruit fluctuates. In addition, the peak diversity of reflectance rate between fruits and leaves of fruit trees is reached at 850 nm of wavelength. So the limit value can be designed at this wavelength in order to distinguish fruits and leaves. The method introduced here can not only quickly distinguish fruits, leaves and branches, but also avoid the effects of surroundings. Compared with the traditional navigation systems based on machine vision, there are still some special and unique features in the field of positioning the fruits of fruit trees using spectral navigation technology.
|
Received: 2008-12-10
Accepted: 2009-03-20
|
|
Corresponding Authors:
ZHAO Zhi-min
E-mail: zhaozhimin@nuaa.edu.cn
|
|
[1] Leemans V, Magein H, Destain M F. Biosystems Engineering, 2002, 83(4): 391. [2] Panigrahi S, Misra M K, Willson S. Computers and Electronics in Agriculture, 1998, 20(1): 1. [3] Reed J N, Miles S J, Butler J, et al. Journal of Agricultural Engineering Research, 2001, 78(1): 15. [4] YING Yi-bin(应义斌). Journal of Biomathematics(生物数学学报), 2001, 16(2): 234. [5] HUANG Xing-yi, WEI Hai-li, ZHAO Jie-wen(黄星奕, 魏海丽, 赵杰文). Food and Machinery(食品与机械), 2006, 22(1): 27. [6] Sarig Y. Journal of Agricultural Engineering Research, 1993, 54: 265. [7] Wang J, Maiorov M, Jeffries J B, et al. Measurement Science & Technology, 2000, 11: 1576. [8] Dupuis G, Elias M, Simonot L. Applied Spectroscopy, 2002, 56(10): 1329. [9] Petrich W, Staib A, Otto M, et al, Vibrational Spectroscopy, 2002, 28(1): 117. [10] Bacci M, Casini A, Cucci C. Journal of Cultural Heritage, 2003, 4(4): 329. [11] Fehr B W, Gerrish J C. Applied Engineering Agriculture, 1995, 11(4): 613. [12] Torii T, Takamizawa A, Okamoto T, et a1. Journal of JSAE, 2000, 62(5): 37. [13] YU Guo-ying, MAO Han-ping(于国英, 毛罕平). Journal of Agricultural Mechanization Research(农机化研究), 2007, 1: 167.
|
[1] |
HE Qing-yuan1, 2, REN Yi1, 2, LIU Jing-hua1, 2, LIU Li1, 2, YANG Hao1, 2, LI Zheng-peng1, 2, ZHAN Qiu-wen1, 2*. Study on Rapid Determination of Qualities of Alfalfa Hay Based on NIRS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3753-3757. |
[2] |
LIU Wei1, 2, ZHANG Peng-yu1, 2, WU Na1, 2. The Spectroscopic Analysis of Corrosion Products on Gold-Painted Copper-Based Bodhisattva (Guanyin) in Half Lotus Position From National Museum of China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3832-3839. |
[3] |
LIU Wen-bo, LIU Jin, HAN Tong-shuai*, GE Qing, LIU Rong. Simulation of the Effect of Dermal Thickness on Non-Invasive Blood Glucose Measurement by Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2699-2704. |
[4] |
YAN Xue-jun1, ZHOU Yang2, HU Dan-jing1, YU Dan-yan1, YU Si-yi1, YAN Jun1*. Application of UV-VIS Diffuse Reflectance Spectrum, Raman and
Photoluminescence Spectrum Technology in Nondestructive
Testing of Yellow Pearl[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1703-1710. |
[5] |
CHEN Xiao-li1, LI You-li1, LI Wei3, WANG Li-chun1, GUO Wen-zhong1, 2*. Effects of Red and Blue LED Lighting Modes on Spectral Characteristics and Coloring of Tomato Fruit[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1809-1814. |
[6] |
YAN Jun1, FANG Shi-bin1, YAN Xue-jun1, SHENG Jia-wei2, XU Jiang1, XU Chong3, ZHANG Jian2*. Study on the Common Effect of Heat Treatment, Dyeing or Irradiation Treatment on UV-Vis Diffuse Reflectance Spectra of Pearls[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3697-3702. |
[7] |
FANG Shi-bin1, JIANG Yang-ming1, YAN Jun1, 2, YAN Xue-jun1, ZHOU Yang3, ZHANG Jian2*. The Types of UV-Vis Diffuse Reflectance Spectra of Common Gray Pearls and Their Coloring Mechanism[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3703-3708. |
[8] |
WU Meng-ruo, QIN Zhen-fang, HAN Liu-yang, HAN Xiang-na*. Preparation and Spectra Study of Artificially Degraded Waterlogged Wood[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2941-2946. |
[9] |
WANG Jing1, 2*, CHEN Zhen3, GAO Quan-zhou1. Diffuse Reflectance Spectroscopy Study of Mottled Clay in the Coastal
Area of Fujian and Guangdong Provinces and the Interpretation of Its
Origin and Sedimentary Environment[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2494-2498. |
[10] |
ZHU Meng-yuan1, 2, LÜ Bin1, 2*, GUO Ying2. Comparison of Haematite and Goethite Contents in Aeolian Deposits in Different Climate Zones Based on Diffuse Reflectance Spectroscopy and Chromaticity Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1684-1690. |
[11] |
WENG Shi-zhuang*, CHU Zhao-jie, WANG Man-qin, WANG Nian. Reflectance Spectroscopy for Accurate and Fast Analysis of Saturated
Fatty Acid of Edible Oil Using Spectroscopy-Based 2D Convolution
Regression Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1490-1496. |
[12] |
WANG Chun-juan1, 2, ZHOU Bin1, 2*, ZHENG Yao-yao3, YU Zhi-feng1, 2. Navigation Observation of Reflectance Spectrum of Water Surface in Inland Rivers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 878-883. |
[13] |
JIANG Jie1, YU Quan-zhou1, 2, 3*, LIANG Tian-quan1, 2, TANG Qing-xin1, 2, 3, ZHANG Ying-hao1, 3, ZHANG Huai-zhen1, 2, 3. Analysis of Spectral Characteristics of Different Wetland Landscapes Based on EO-1 Hyperion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 517-523. |
[14] |
XU Zhao-jin, LI Dong-liang, SHEN Li*. Study on Diffuse Reflection and Absorption Spectra of Organic and Inorganic Chinese Painting Pigments[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3915-3921. |
[15] |
WANG Cong1, Mara Camaiti2, TIE Fu-de1,3, ZHAO Xi-chen4, CAO Yi-jian5*. Preliminary Study on the Non-Invasive Characterization of Organic Binding Media Employing a Portable Hyperspectral Sensor[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2886-2891. |
|
|
|
|