光谱学与光谱分析 |
|
|
|
|
|
Evidence of Discontinuities in the Raman Spectra of Aqueous NaCl Solution at High Pressure |
YANG Yu-ping1, ZHENG Hai-fei2*, SUN Qiang2 |
1. Key Laboratory of Orogenic Belts and Crustal Evolution of Peking University, Ministry of Education, Beijing 100871, China 2. School of Earth and Space Science, Peking University, Beijing 100871, China |
|
|
Abstract In-situ Raman spectra measurement for aqueous NaCl solution was conducted at the temperature of 21 ℃ and the pressures of 50-1 100 MPa using a SiC anvil cell. It is shown that the decomposed bands of aqueous NaCl solution shift to lower wavenumber with increasing pressure initially and reaches the minimum at about 300 MPa, and increases at higher pressure up to about 800 MPa, then decreases again with increasing pressure. Similarly, the ratio of band-area and the width at half maximum of the decomposed bands of the solution exhibit discontinuities at about 300 and 800 MPa. This finding demonstrates that the structure of aqueous NaCl solution is discontinuous at high pressure and O—H…Cl- bonds change correspondingly, which suggests the existence of rearrangement and the appearance of more complicated configuration in the interior structrure of aqueous NaCl solution.
|
Received: 2008-03-26
Accepted: 2008-06-28
|
|
Corresponding Authors:
ZHENG Hai-fei
E-mail: hfzheng@pku.edu.cn
|
|
[1] XIE Hong-sen(谢鸿森). Introduction of Materials Science of the Earth’s Interior(地球深部物质科学导论). Beijing: Science Press(北京: 科学出版社), 1997. 225. [2] ZHENG Hai-fei, Shen Andy, ZHANG Ming, et al(郑海飞, Shen Andy, 张 明, 等). Progress in Natural Science(自然科学进展), 2002, 12(6): 662. [3] YANG Yu-ping, ZHENG Hai-fei, SUN Qiang(杨玉萍, 郑海飞, 孙 樯). Progress in Natural Science(自然科学进展), 2006, 16(1): 116. [4] ZHENG Hai-fei, SUN Qiang, Shen Andy, et al(郑海飞, 孙 樯, Shen Andy, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2004, 24(4): 411. [5] SUN Qiang, ZHENG Hai-fei, XIE Hong-sen, et al(孙 樯, 郑海飞, 谢鸿森, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2004, 24(8): 963. [6] Lobban C, Finney J L, Kuhs W F. Nature, 1998, 391: 268. [7] Finney J L, Bowron D T, Soper A K, et al. Phys. Rev. Lett., 2002, 89: 205503. [8] Mishima O, Stanley H E. Nature, 1998, 396: 329. [9] Mishima O, Calvert L D, Whalley E. Nature, 1985, 314: 76. [10] ZHENG Hai-fei, XIE Hong-sen, XU You-sheng, et al(郑海飞, 谢鸿森, 徐有生, 等). Chinese Science Bulletin(科学通报), 1997, 42(9): 897. [11] Soper A K, Ricci M A. Phys. Rev. Lett., 2000, 84: 2881. [12] Saitta A M, Datchi F. Phys. Rev. E, 2003, 67: 020201. [13] Carey D M, Korenowski G M. J. Chem. Phys., 1998, 108: 7. [14] Kawamoto T, Ochiai S, Kagi H. J. Chem. Phys., 2004, 120: 5867. [15] Li R, Jiang Z, Chen F, et al. J. Mol. Struct., 2004, 707: 83. [16] Okada T, Komatsu K, Kawamoto T, et al. Spectrochim. Acta A, 2005, 61(10): 2423. [17] Truskett T M, Dill K A. Biophys. Chem., 2003, 105: 449. [18] Nakahara M, Matubayasi N, Wakai C, et al. J. Mol. Liq., 2001, 90(1-3): 75. [19] Finney J L. J. Mol. Liq., 2001, 90(1-3): 303. [20] Bondarenko G V, Gorbaty Yu E, Okhulkov A V, et al. J. Phys. Chem. A, 2006, 110: 4042. [21] Fedotova M V Russian. J. Phys. Chem., 2007, A81(5): 721. [22] ZHENG Hai-fei, XIE Hong-sen, XU You-sheng, et al(郑海飞, 谢鸿森, 徐有生, 等). Chinese Science Bulletin(科学通报), 1997, 42(14): 1545. [23] Okhulkov A V, Gorbaty Yu E. J. Mol. Liq., 2001, 93(1-3): 39. [24] Mao H K, Bell P M. Design and Varieties of the Megabar Cell. Carnegie Institute Washington Yearbook, 1978, 77. 904. [25] DUAN Ti-yu, SUN Qiang, ZHENG Hai-fei(段体玉, 孙 樯, 郑海飞). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2005, 25(6): 902. [26] Schmidt C, Ziemann M A. Amer. Mineralogist, 2000, 85: 1725. [27] Okhulkov A V, Denianets Y N, Gorbaty Yu E. J. Chem. Phys., l994, 100: l578. [28] Ohtaka O, Arima H, Fukui H, et al. Phys. Rev. Lett., 2004, 92: 155506. [29] Koga J, Nishio K, Yamaguchi T, et al. J. Phys. Soc. Jpn., 2004, 73: 388.
|
[1] |
WAN Mei, ZHANG Jia-le, FANG Ji-yuan, LIU Jian-jun, HONG Zhi, DU Yong*. Terahertz Spectroscopy and DFT Calculations of Isonicotinamide-Glutaric Acid-Pyrazinamide Ternary Cocrystal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3781-3787. |
[2] |
ZHANG Yan-dong1, WU Xiao-jing1*, LI Zi-xuan1, CHENG Long-jiu2. Two-Dimensional Infrared Spectroscopic Study of Choline
Chloride/Glycerin Solution Disturbed by Temperature[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3047-3051. |
[3] |
HU Meng-ying1, 2, ZHANG Peng-peng1, 2, LIU Bin1, 2, DU Xue-miao1, 2, ZHANG Ling-huo1, 2, XU Jin-li1, 2*, BAI Jin-feng1, 2. Determination of Si, Al, Fe, K in Soil by High Pressure Pelletised Sample and Laser-Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2174-2180. |
[4] |
JUMAHONG Yilizhati1, 2, TAN Xi-juan1, 2*, LIANG Ting1, 2, ZHOU Yi1, 2. Determination of Heavy Metals and Rare Earth Elements in Bottom Ash of Waste Incineration by ICP-MS With High-Pressure Closed
Digestion Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3168-3173. |
[5] |
TAO Yu-rui, WANG Hong-bo*, WANG Hai-hua*, ZHOU Mi*. Pressure-Induced Phase and Isomer Transition of Dicyandiamide[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3046-3051. |
[6] |
SHI Pei1, JIN Zhi-wei1, WANG Fen1*, LUO Hong-jie1, 2, ZHU Jian-feng1, YE Guo-zhen3, ZHANG Yu-feng4. Influence Mechanism of the Iron-Rich Raw Material on the Iron-Based Crystalline Glazes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1628-1633. |
[7] |
YE Shuang1, CHEN Mei-hua1*, WU Gai2, HE Shuang1. Spectroscopic Characteristics and Identification Methods of Color-Treated Purplish Red Diamonds[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 191-196. |
[8] |
LIU Xin-wei1,2, CHEN Mei-hua2*, WU Gai3, LU Si-ming1, BAI Ying4. Effects of Spectral Characteristics of High Temperature High Pressure Annealed Brown CVD Diamonds[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 258-264. |
[9] |
HU Qing-cheng, ZHAO Hai-wen. A Flexible Water Structure: Evidence From Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3753-3758. |
[10] |
LI Huan-tong1, 2, CAO Dai-yong3*, ZHANG Wei-guo1, 2, WANG Lu4. XRD and Raman Spectroscopy Characterization of Graphitization Trajectories of High-Rank Coal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2491-2498. |
[11] |
YU Chun-mei, ZHANG Nan, TENG Hai-peng. Investigation of Different Structures of Coals Through FTIR and Raman Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2050-2056. |
[12] |
XU Chao-wen1, 2, 3, GAO Jing4*, LI Ying1*, QIN Fei5, LIU Hong1, YI Li1, CUI Yue-ju1, SUN Feng-xia1, FANG Lei-ming6. High Pressure Raman Spectrum Study of Na2CO3[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2087-2091. |
[13] |
ZHANG Tong-jun, LI De-hua, CAO Qiu-hong, LIN Hong-mei, HAO Jian-jun. Experimental Measurement and Theoretical Simulation on Terahertz Spectra of Crystal Acetamiprid[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2012-2017. |
[14] |
QIAN Kun, BAI Zhi-chen, WU Rui, WANG Jia-hui, SU Bo*, WEN Yi-wei, ZHANG Cun-lin. Terahertz Transmission Characteristics of Electrolyte Solution[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2018-2022. |
[15] |
LI Ling1,2, HE Xin-yu1,2, LI Shi-fang1,2, GE Chuang3*, XU Yi1,2,4*. Research Progress in Identification and Detection of Fungi Based on SERS Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1661-1668. |
|
|
|
|