|
|
|
|
|
|
| Study on Infrared Spectral Radiation Characteristics of Exhaust Plumes From Nuclear-Like Cruise Missiles Based on Modified Narrow-Band
Method |
| YANG Jie, BAI Lu*, LI Jin-lu, LIU Rui-xi |
School of Physics, Xidian University, Xi'an 710071, China
|
|
|
|
|
Abstract This paper proposes an improved narrow-band model based on a correction function for calculating infrared radiation from two types of nuclear cruise missile plumes. The model replaces narrow-band parameters in the Curtis-Godson (CG) approximation with path-equivalent narrow-band parameters to address accuracy degradation in non-uniform combustion systems. Compared with experimental data from Reference[1], the improved narrow-band model with correction function demonstrates better alignment with experimental results than traditional CG-based narrow-band models, showing accuracy improvements of 13.29%, 18.01%, and 8.4% in the 2.7, 4.3, and 3~5 μm bands, respectively. Building on this foundation, flow field parameters varying along trajectory points for AGM-86B-type and AGM-158B-type missiles are calculated. By solving the radiative transfer equation using the Line of Sight (LOS) method, an infrared radiation calculation model for nuclear cruise missile plumes is established, enabling computation and analysis of infrared radiation characteristics at flight altitudes ranging from 1 to 20 km. Results indicate that for AGM-86B-type missiles, radiation intensities in the 2.7 and 4.3 μm bands exhibit similar altitude-dependent trends, reaching peak signals at 5 km altitude during the latter half of the flight trajectory. For AGM-158B-type cruise missiles during their flight trajectory from 20 to 1 km, the radiation intensity in the 4.3 μm band is consistently higher than that in the 2.7 μm band. These findings provide theoretical support for early-stage missile type identification and interception of these two missile categories.
|
|
Received: 2025-04-22
Accepted: 2025-09-15
|
|
|
|
Corresponding Authors:
BAI Lu
E-mail: blu@xidian.edu.cn
|
|
[1] Avital G, Cohen Y, Gamss L, et al. Journal of Thermophysics and Heat Transfer, 2001, 15(4): 377.
[2] Lowther A B. Strategic Studies Quarterly, 2017, 11(3): 34.
[3] Evans D, Schwalbe J. The Long-Range Standoff (LRSO) Cruise Missile and Its Role in Future Nuclear Forces, Applied Physics Laboratory, Johns Hopkins University, 2017.
[4] Majumdar S. Vayu Aerospace and Defence Review, 2021,(1): 128.
[5] LIU Ying(刘 颖). Aerodynamic Missile Journal(飞航导弹), 2013, (11): 12.
[6] CAI Hong-hua, NIE Wan-sheng, SU Ling-yu, et al(蔡红华, 聂万胜, 苏凌宇,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2019, 39(7): 1999.
[7] Li J, Bai L, Zhang L, et al. International Journal of Heat and Mass Transfer, 2023, 216: 124606.
[8] Zhang W, Shuai Y, Gao P, et al. Infrared Physics & Technology, 2024, 139: 105312.
[9] Zhu T, Sun Y, Niu Q, et al. International Journal of Heat and Mass Transfer, 2024, 229: 125663.
[10] Chen Y, He B, Liu L, et al. International Journal of Heat and Mass Transfer, 2025, 241: 126765.
[11] Hou S, Wang Q, Hu H, et al. International Journal of Thermal Sciences, 2025, 210: 109567.
[12] LIU Zun-yang, SHAO Li, WANG Ya-fu, et al(刘尊洋, 邵 立, 汪亚夫,等). Acta Optica Sinica(光学学报), 2013, 33(4): 9.
[13] BAO Xing-dong, YU Xi-long, WANG Zhen-hua, et al(包醒东, 余西龙, 王振华,等). Journal of Propulsion Technology(推进技术), 2021, 42(3): 569.
[14] Niu Q, Duan X, Meng X, et al. Infrared Physics & Technology, 2019, 99: 28.
[15] Ibgui L, Hartmann J-M. Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 75(3): 273.
[16] Rivière P, Soufiani A. International Journal of Heat and Mass Transfer, 2012, 55(13-14): 3349.
[17] Zheng S, Yang Y, Zhou H. International Journal of Heat and Mass Transfer, 2019, 129: 1232.
[18] Qi C, Zheng S, Zhou H. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 197: 45.
[19] Zheng S, Zhang M, Na M, ea al. ES Energy & Environment, 2022, 17(4): 33.
[20] Zheng S, Sui R, Sun Y, et al. ES Energy & Environment, 2021, 12(2): 4.
[21] Krakow B, Babrov H J, Maclay G J, et al. Applied Optics, 1966, 5(11): 1791.
[22] Soufiani A, Hartmann J M, Taine J. Journal of Quantitative Spectroscopy and Radiative Transfer, 1985, 33(3): 243.
[23] Ludwig C B, Malkmus W, Reardon J, et al. Handbook of Infrared Radiation from Combustion Gases,Washington: Space Administration, 1973.
[24] Yamamoto G, Aida M, Yamamoto S. Journal of Atmospheric Sciences, 1972, 29(6): 1150.
[25] Malkmus W. Journal of the Optical Society of America, 1967, 57(3): 323.
[26] Young S J. Journal of Quantitative Spectroscopy and Radiative Transfer, 1977, 18(1): 1.
[27] Li J, Bai L, Bai J, et al. Infrared Physics & Technology, 2022, 125: 104260.
[28] Sun Y, Niu Q, Zhu T, et al. Journal of Quantitative Spectroscopy and Radiative Transfer, 2024, 328: 109146.
[29] Burdette G W, Lander H R, McCoy J R. Journal of Energy, 1978, 2(5): 289.
[30] Gordon S, McBride B J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. Part 1: Analysis,NASA Reference Publication 1311, 1994.
[31] Niu Q, He Z, Dong S. Chinese Journal of Aeronautics, 2017, 30(3): 1101. |
| [1] |
YANG Chen-nan1, 2, FU Yue-gang1, 2*, OUYANG Ming-zhao1, 2*, YUAN Shuai1, 2, HE Wen-jun1, 2, ZHAO Yu-sen1, 2. Polarization Characteristics of Infrared Radiation on High-Temperature Metal Surfaces[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(06): 1557-1565. |
| [2] |
JIANG Yue-peng, CAO Yun-hua*, WU Zhen-sen, CAO Yi-sen, HU Sui-jing. Measurement of Mid-Wave Infrared Hyperspectral Imaging
Characteristics of Ground Targets[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 937-944. |
| [3] |
CHENG Gang1, CAO Ya-nan1, TIAN Xing1, CAO Yuan2, LIU Kun2. Simulation of Airflow Performance and Parameter Optimization of
Photoacoustic Cell Based on Orthogonal Test[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3899-3905. |
| [4] |
WANG Xing-sheng, YUAN Li-xin, LI Xin, WANG Ming, GAO Xun*, LIN Jing-quan*. The IR Radiation Characteristics of Nanosecond Pulsed Laser Induced Air Plasma[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(09): 2698-2701. |
| [5] |
CAI Hong-hua, NIE Wan-sheng, SU Ling-yu, GUO Kang-kang. Study on the Influence of Chemical Reaction Mechanisms on the Infrared Radiation Characteristics of the LOX/Kerosene Rocket Engine Plume[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(07): 1999-2007. |
| [6] |
SUN Ke-wei, JIN Dan, YANG Chun-li. Effects of Temperature on the Infrared Emission Performance of AZO Films[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(06): 1975-1979. |
| [7] |
CAI Hong-hua, NIE Wan-sheng*, SU Ling-yu, SHI Tian-yi. Study on the Infrared Radiation Characteristics of the GOX/KERO Engine Plume[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(09): 2735-2740. |
| [8] |
HE Lei, GONG Yan*, GUO Qing-hua, HU Chong-he, YU Guang-suo*. Numerical Study on OH* Radicals in the Laminar Methane/Oxygen Co-Flowing Jet Diffusion Flame[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 685-691. |
| [9] |
YE Song1, 3,LI Shu1, 3,XIONG Wei2,WANG Jie-jun1, 3*,WANG Xin-qiang1, 3,ZHANG Wen-tao1, 3,YUAN Zong-heng1, 3. Calculation and Simulation on NIR Hyperspectrum of Engine Exhaust Plume[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(09): 2717-2723. |
| [10] |
CHEN Wei-li1, SUN Qiu-ju2, WANG Shu-hua1, LI Jun-wei1, DONG Yan-bing1, XU Wen-bin1. Influence Analysis of Target Surface Emissivity on Infrared Radiation Polarization Characteristics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(03): 737-742. |
| [11] |
CHEN Xiao-tian, ZHOU Jin-wei, LI Ji-cheng . A Novel Method of Infrared Radiative Parameters Calculation in High Temperature Flow Field [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(11): 3068-3072. |
| [12] |
ZHANG Jun, WANG Guo-lin, MA Hao-jun, LIU Li-ping . Infrared Radiation Experimental Measurement and Analyse of Carbon Dioxide at High Temperature[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(12): 3169-3173. |
| [13] |
WU Ting-ting, CHEN Xin, HAN Ai-jun, YE Ming-quan, ZHAO Min-chun . Effect of High-Temperature Phase Change Material on the Performance of Infrared Decoy [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(10): 2651-2654. |
| [14] |
LI Jian-xun, TONG Zhong-xiang*, WANG Chao-zhe, TONG Qi, LI He, ZHANG Zhi-bo . Calculation and Simulation on Infrared Radiation of Hot Jet from Engine [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(01): 7-13. |
| [15] |
LING Jun, ZHANG Shuan-qin, PAN Jia-liang, LIAN Chang-chun, YANG Hui . The Study of Transpiration Influence on Plant Infrared Radiation Character[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(07): 1775-1779. |
|
|
|
|