|
|
|
|
|
|
External Electric Field Effects on the Molecular Structure and Spectra of 1,5-Dinitronaphthalene |
LI Yi-duo1, FENG Zhi-fang1, CHEN Dong-ming2, ZHANG Qian1, YAO Ning1, ZHANG Ping1, TAO Ya-ping3, ZHAO Wen-lai4, DU Jian-bin1* |
1. College of Science, Langfang Normal University, Langfang 065000, China
2. School of Mechanical and Electrical Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China
3. College of Physics and Electronic Information, Luoyang Normal University, Luoyang 471934, China
4. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
|
|
|
Abstract 1,5-dinitronaphthalene (DNN) is an important chemical raw material, widely used in various fields. To study the effect of external electric field (EEF) on DNN, the B3LYP of density functional theory (DFT) is employed to optimize the ground state structure of DNN at the def2-TZVP basis set level, and its infrared (IR) spectra are obtained. Based on this, time-dependent density functional theory (TDDFT) is employed to calculate the change in UV-Vis spectra of DNN under EEF. The range of the electrostatic field is 0~0.02 a.u. in this work. The results show that the geometric configuration of DNN strongly depends on changes in EEF. The dipole moment increases with the enhancement of EEF, while the change in total energy is opposite. The IR spectra undergo energy splitting, and the vibration Stark effect is obvious. The absorption peaks of the UV-Vis spectra exhibit a red shift; the molar coefficients initially increase and then decrease. In the two-dimensional UV-Vis spectrum of DNN, there is a strong autocorrelation peak at 200 nm on the diagonal of the synchronous graph, which indicates that the peak is very sensitive to changes in EEF. In summary, EEF has a significant impact on DNN. This work provides theoretical guidance for various potential applications of DNN, and also has reference value for the study of other nitration products of naphthalene.
|
Received: 2025-04-22
Accepted: 2025-07-15
|
|
Corresponding Authors:
DU Jian-bin
E-mail: dujianbinfzf@tju.edu.cn
|
|
[1] Xiong W, Zhou S S, Zhao Z Y, et al. Frontiers of Chemical Science and Engineering, 2021, 15(4): 998.
[2] Yan J Q, You K Y, Yin J H, et al. Surfaces and Interfaces, 2023, 36: 102501.
[3] Chen Z F, Su H, Sun P F, et al. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(6): e2116775119.
[4] Onduka T, Ojima D, Ito K, et al. Chemosphere, 2017, 169: 596.
[5] DU Jian-bin, FENG Zhi-fang, ZHANG Qian, et al (杜建宾,冯志芳,张 倩,等). Acta Physica Sinica(物理学报), 2019, 68(17): 173101.
[6] Zhang Q, Feng Z F, Niu Y L, et al. Chemical Physics Letters, 2024, 849: 141419.
[7] LIU Chen-xi, PANG Guo-wang, PAN Duo-qiao, et al(刘晨曦,庞国旺,潘多桥,等). Acta Physica Sinica(物理学报), 2022, 71(9): 097301.
[8] Sjoblom J, Mhatre S, Simon S, et al. Advances in Colloid and Interface Science, 2021, 294: 102455.
[9] Wu L T, Nachimuthu S, Kaleta J, et al. Journal of Chemical Physics, 2024, 161: 214301.
[10] Rana D, Ranga A K, Materny A. Physical Chemistry Chemical Physics, 2025, 27: 4475.
[11] QI Kai, ZHU Xing-guang, WANG Jun, et al(齐 凯,朱星光,王 军,等). Acta Physica Sinica(物理学报), 2024, 73(15): 156801.
[12] AN Huan, YAN Hao-kui, XIANG Mei, et al(安 桓,闫好奎,向 梅,等). Spectroscopy and Spectral Analysis (光谱学与光谱分析), 2023, 43(2): 405.
[13] Tao Y P, Wang Q, Sun K X, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 231: 118108.
[14] Peng X G, Cao W J, Hu Z B, et al. Journal of Chemical Physics, 2024, 160: 054308.
[15] Mori T. Angewandte Chemie International Edition, 2024, 63: e202319702.
[16] Sharma P, Ranjan P, Chakraborty T. Materials Today Sustainability, 2024, 26: 100791.
[17] Burguera S, Sahu A K, Chavez Romero M J, et al. Physical Chemistry Chemical Physics, 2024, 26: 18606.
[18] Duan J J, Yang X Q, Li R N, et al. Journal of the American Chemical Society, 2024, 146: 13025.
[19] Diao K, Shi S P, Song Y, et al. International Journal of Hydrogen Energy, 2024, 67: 1173.
[20] Roy S, Durholt J P, Asche T S, et al. Nature Communications, 2024, 15: 6030.
[21] Sameera W M C, Senevirathne B, Andersson S, et al. The Journal of Physical Chemistry A, 2021, 125: 387.
[22] Tao Y P, Han L G, Sun A D, et al. Crystals, 2020, 10: 19.
[23] Grozema F C, Telesca R, Jonkman H T, et al. Journal of Chemical Physics, 2001, 115(21): 10014.
[24] Wu D L, Tan B, Wan H J, et al. Chinese Physics B, 2013, 22(12): 123101.
[25] Lin H, Liu Y Z, Yin W Y, et al. Journal of Theoretical and Computational Chemistry, 2018, 17(4) 1850029.
[26] Du J B, Yao N, Ma X Y, et al. Chemical Physics Letters, 2023, 810: 140176.
[27] Arivazhagan M, Krishnakumar V, Xavier R J, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009, 72: 941.
[28] van Adrichem K E, Jansen T L C. Journal of Chemical Theory and Computation, 2022, 18: 3089.
[29] Zhang W, Wu B H, Sun S T, et al. Nature Communications, 2021, 12: 4082.
|
[1] |
DAI Jing-jing1, 2*, LIU Zhi-bo2*, BAI Long-yang2, SONG Yang1, 2, WANG Nan2, CHEN Wei1, 2, YUAN Chang-jiang3. Hyperspectral Prospecting Enlightenment of the Luobu Mineralization Site in Tibet[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(10): 2849-2855. |
[2] |
LU Si, CHEN Xiao-li, LIANG Zheng, WANG Xiao-man, SU Qiu-cheng, QI Wei, FU Juan*. Application of In Situ Infrared Spectroscopy to the Research of Biomass
Conversion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(10): 2701-2710. |
[3] |
SUN Zhong-yuan, GUO Yu-jun, XU Ying-jie*. Application and Progress of Nuclear Magnetic Resonance and Infrared Spectra in the Study of the Mechanism of Ionic Liquid-Catalyzed Reaction of CO2 With 2-Aminobenzonitrile[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(10): 2711-2719. |
[4] |
ZHANG Xu1, XIE Zhuo-jun1, QIN Zi-quan1, ZHAO Rui-jie1, LIU Wen-zheng1, BAI Xue-bing1, XIONG Xiao-lin2*, LIU Xu1. Research Progress of Miniaturized Vis/NIR Spectrometers in Leaf and Fruit Nondestructive Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(10): 2720-2729. |
[5] |
SUN Hao-ran1, ZHAO Chun-yuan1, LIN Xiao-mei2, GAO Xun3, FANG Jian1*. Research on Lung Tumor Diagnosis Method Based on Laser-Induced Breakdown Spectroscopy Combined With Deep Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(10): 2730-2736. |
[6] |
LI Tang-hu2, GAN Ting-ting1, 4*, ZHAO Nan-jing1, 2, 3, 4, 5*, YIN Gao-fang1, 4, 5, WANG Ying1, 3, 4, LI Xing-chi1, 3, 4, SHENG Ruo-yu1, 3, 4, YE Zi-qi1, 3, 4. Resolution Method of Overlapping Peaks in Soil XRF Spectrum Based on WPS-GMM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(10): 2737-2746. |
[7] |
ZENG Zao, ZHANG Hao, FAN Yi-ning, YAN Jin-ling. Study on the Interaction Between Dehydronorcantharidin Imide-Cinnamaldehyde and Human Serum Albumin by Spectroscopy and Molecular Docking Simulation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(10): 2783-2789. |
[8] |
CHEN Xing-wang, SSEKASAMBA Hakim, REN Kai-wen, LI Wei-xing, WANG Zi-yan, TANG Xiao-liang*, QIU Gao. Helium Atmospheric Pressure Dielectric Barrier Discharge Plasma Emission Spectroscopy Analysis and Voltage-Flow Co-Control Mechanism[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(10): 2754-2759. |
[9] |
SUN Xu-dong1, LONG Tao1, WANG Jia-hua2, FENG Shao-ran3, ZENG Ti-wei4, XIE Dong-fu1, FU Wei1. Near-Infrared Spectroscopy Prediction of the Optimal Harvest Date for Autumn Moon Pear: Considering the Correction of Ambient Light Changes and Inter-Instrument Differences[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(10): 2774-2782. |
[10] |
HU Rui1, 2, LI Yu-jun1, 2*, JIAO Shang-bin1, 2, SUN Peng-cheng1, 2, WU Chen-yan1, 2. Kernel Mahalanobis-Driven Clustering for Outlier Detection in
Mid-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(10): 2816-2821. |
[11] |
ZHANG Meng-fan1, LI Mao-gang1*, LIU Yi-jiang1, YAN Chun-hua1, ZHANG Tian-long2, LI Hua1, 2*. Rapid Quantitative Analysis of Trace Elements in Petroleum Coke by LIBS Combined With Whale Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(10): 2796-2803. |
[12] |
LI Chang-sheng, GAO Shu-hui*, LI Kai-kai. Feature Analysis and Classification of the Line-Crossing Sequences
Between Stamp Inks and Laser Printing Toner Based on
Hyperspectral Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(10): 2804-2815. |
[13] |
HU Qing-cheng, MA Ya-jie. On the Spectroscopic Features and Analyzing Method of Raman OH Stretch Band of H2O[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(10): 2844-2848. |
[14] |
DING Meng, ZHAO Fan*, WANG Er, ZHANG Hui-ni, WANG Ya-li, HU Rui, WEN Chun-zi, LI Jun-hao. Spectroscopic Analysis of the Mural Pigments in the Zulakang Scripture Hall of E'zhi Temple, Dege, Sichuan[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(10): 2837-2843. |
[15] |
ZHAO Xiao-yan1*, ZHENG Shao-wen1, WU Xian-hao1, SUN Zhi-yan2, 3, TAO Rui2, 3, ZHANG Tian-yao1, YUAN Yuan1, LIU Xing4, ZHOU Da-biao2, 3, ZHANG Zhao-hui1, YANG Pei2, 3*. Prediction of EGFR Amplification Status of Glioma Based on Terahertz Spectral Data With Convolutional Neural Networks[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(10): 2856-2862. |
|
|
|
|