|
|
|
|
|
|
Analysis of Near-Infrared Anharmonic Vibration Spectra of Amino Acids
Using Density Functional Theory |
TANG Yan1, 3, WU Jia1, XU Jian-jie2*, GUO Teng-xiao2, HU Jian-bo1, 4, ZHANG Hang4, LIU Yong-gang5*, YANG Yun-fan4 |
1. State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
2. State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
3. Chongqing Tsingshan Industrial Co., Ltd., Chongqing 402776, China
4. Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
5. Analysis and Testing Center, Southwest University of Science and Technology, Mianyang 621010, China
|
|
|
Abstract Amino acids play an important role in organisms as the basic building blocks of proteins. The functions of amino acids with different group compositions and chiral structures are different, showing an urgent requirement to identify the basic chemical structure and molecular vibration information. This will provide an important theoretical basis for constructing basic biomolecule spectra and structural correlation models. NIR spectrum mainly shows the first overtone and binary combination vibration information of various hydrogen-containing groups (such as O—H, N—H, C—H, etc.). The vibration information is relatively complex, coupled with the resolution limitations of conventional infrared spectroscopy instruments and other reasons, resulting in a spectrum of experimental results. The band becomes wider, and its vibration mode cannot be accurately identified, making analysis more difficult. The theoretical calculation can independently calculate each vibration mode, providing clearer spectral information, and then analyze the wide absorption band obtained experimentally. This makes it easier to identify and analyze the structural vibration information of various groups in different molecular systems. In this work, the DFT calculation method carried out the structure optimization and anharmonic vibration analysis of three amino acids (glutamic acid, cysteine, glycine) and polypeptide (glutathione) composed of these three amino acids. The high-precision NIR spectrum of the four molecules in the band of 7 500~4 500 cm-1 was calculated, and detailed band assignments were made, dividing the entire near-infrared band into three spectral regions dependent on the vibration intensity. Furthermore, the influence of structure and constituent groups on the spectral characteristics was explored, and the corresponding relationships between the spectra and the structure were established. Our research would provide ideas for a deeper understanding of the structural properties of amino acids and peptides.
|
Received: 2023-06-07
Accepted: 2024-01-12
|
|
Corresponding Authors:
XU Jian-jie, LIU Yong-gang
E-mail: 693801236@qq.com; xujianjie@sklnbcpc.cn
|
|
[1] Kaspar H, Dettmer K, Gronwald W, et al. Analytical and Bioanalytical Chemistry, 2009, 393(2): 445.
[2] Ballantyne J. Fish Physiology, 2001, 20: 77.
[3] Barth A. Progress in Biophysics & Molecular Biology, 2000, 74(3-5): 141.
[4] Pinto S M V, Tasinato N, Barone V, et al. Physical Chemistry Chemical Physics, 2020, 22(5): 3008.
[5] Zheng G, Bao Z, Pérez-Juste J, et al. Angewandte Chemie International Edition, 2018, 57(50): 16452.
[6] Heigl N, Huck C W, Rainer M, et al. Amino Acids, 2006, 31(1): 45.
[7] Barth A. Biochimica et Biophysica Acta, 2007, 1767(9): 1073.
[8] Kačuráková M, Wilson R H. Carbohydrate Polymers, 2001, 44(4): 291.
[9] Ferrari M, Mottola L, Quaresima V. Canadian Journal of Applied Physiology, 2004, 29(4): 463.
[10] Marin T, Moore J. Advances in Neonatal Care, 2011, 11(6): 382.
[11] Pasquini C. Analytica Chimica Acta, 2018, 1026: 8.
[12] Ma L, Peng Y, Pei Y, et al. Scientific Reports, 2019, 9(1): 9503.
[13] Cherfi A, Fevotte G, Novat C. Journal of Applied Polymer Science, 2002, 85(12): 2510.
[14] Farag A A M. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2006, 65(3-4): 667.
[15] Hyun H, Owens E A, Narayana L, et al. RSC Advances, 2014, 4(102): 58762.
[16] Bao K, Nasr K A, Hyun H, et al. Theranostics, 2015, 5(6): 609.
[17] Ramkumaar G R, Shalini M B, Gunasekaran S, et al. Molecular Simulation, 2015, 41(4): 333.
[18] Kumar J K, Gunasekaran S, Loganathan S, et al. Spectrochimica Acta Part A: Molecular Biomolecular Spectroscopy, 2013, 115: 730.
[19] Xue J T, Shi Y L, Ye L M, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 205: 419.
[20] Liu R, Sun Q, Hu T, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 192: 75.
[21] Xu L, Sun W, Wu C, et al. Molecules, 2019, 24(8): 1550.
[22] Ji W, Viscarra Rossel R A, Shi Z. European Journal of Soil Science, 2015, 66(3): 555.
[23] Gredilla A, De Vallejuelo S F-O, Elejoste N, et al. TRAC Trends in Analytical Chemistry, 2016, 76: 30.
[24] Büning-Pfaue H. Food Chemistry, 2003, 82(1): 107.
[25] Li C, Guo H, Zong B, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 206: 254.
[26] Xie L, Ying Y, Ying T. Journal of Food Engineering, 2009, 94(1): 34.
[27] Zou X B, Zhao J W, Povey M J, et al. Analytica Chimica Acta, 2010, 667(1-2): 14.
[28] Koljonen J, Nordling T E M, Alander J T. Journal of Near Infrared Spectroscopy, 2008, 16(3): 189.
[29] Roggo Y, Chalus P, Maurer L, et al. Journal of Pharmaceutical and Biomedical Analysis, 2007, 44(3): 683.
[30] Small G W. TRAC Trends in Analytical Chemistry, 2006, 25(11): 1057.
[31] Grabska J, Ishigaki M, Bec K B, et al. The Journal of Physical Chemistry A, 2017, 121(18): 3437.
[32] Mcdonald D C, Wagner J P, McCoy A B, et al. The Journal of Physical Chemistry Letters, 2018, 9(19): 5664.
[33] Su T, Sun Y, Han L, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 266: 120417.
[34] Chen Y, Morisawa Y, Futami Y, et al. The Journal of Physical Chemistry A, 2014, 118(14): 2576.
[35] Czarnecki M A, Morisawa Y, Katsumoto Y, et al. Physical Chemistry Chemical Physics, 2021, 23(35): 19188.
[36] Bec K B, Futami Y, Wojcik M J, et al. Physical Chemistry Chemical Physics, 2016, 18(19): 13666.
[37] Grabska J, Bec K B, Ozaki Y, et al. The Journal of Physical Chemistry A, 2017, 121(9): 1950.
[38] Lopes Jesus A, Rosado M T, Leitão M L P, et al. The Journal of Physical Chemistry A, 2003, 107(19): 3891.
[39] Bec K B, Grabska J, Kirchler C G, et al. Journal of Molecular Liquids, 2018, 268: 895.
[40] Barone V. The Journal of Chemical Physics, 2005, 122(1): 014108.
[41] Grabska J, Bec K B, Ishigaki M, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 185: 35.
[42] Bec K B, Grabska J, Czarnecki M A. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 197: 176.
[43] Grimme S. The Journal of Chemical Physics, 2006, 124(3): 034108.
[44] Weigend F, Ahlrichs R. Physical Chemistry Chemical Physics, 2005, 7(18): 3297.
[45] Grimme S, Ehrlich S, Goerigk L. Journal of Computational Chemistry, 2011, 32(7): 1456.
[46] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 16, Revision C.01, Gaussion, Inc., Wallingford C T, 2016.
[47] Lu T, Chen F. Journal of Computational Chemistry, 2012, 33(5): 580.
[48] Humphrey W, Dalke A, Schulten K. Journal of Molecular Graphics, 1996, 14(1): 33.
[49] Johnson E R, Keinan S, Mori-Sánchez P, et al. Journal of the American Chemical Society, 2010, 132(18): 6498.
[50] Sutton L E. Tables of Interatomic Distances and Configuration in Molecules and Ions. Special Publication No.11, The Chemical Society, Burlington House, W.1, London, 1958.
[51] Kemnitz C. Spectroscopic Inverstigation on Glutamic Acid by Coulomb PerkinElmer informatics. Cambridge: CambridgeSoft, 2002.
[52] Iijima K, Tanaka K, Onuma S. Journal of Molecular Structure, 1991, 246(3-4): 257.
[53] Görbitz C H. Acta Chemica Scandinavic B, 1987, 41: 362.
[54] Grabska J, Bec K B, Ishigaki M, et al. The Journal of Physical Chemistry B, 2018, 122(27): 6931.
|
[1] |
YU Xin-ran1, 3, ZHAO Peng2, HUAN Ke-wei2, LI Ye2, JIANG Zhi-xia1, 3, ZHOU Lin-hua1, 3*. Research on Intelligent Algorithm of Near-Infrared Spectroscopy
Non-Invasive Detection Based on GA-SVR Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3020-3028. |
[2] |
GE Jing1, 2, LI Zhi-biao1, 2, XUE Bing-qian1, 2, BAI Xi-lin1, 2*. Impact of Fluorine Substitution on the Ultrafast Dynamic Processes of
Coumarin Molecules[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3128-3135. |
[3] |
WANG Hong-en, FENG Guo-hong*, XU Hua-dong, ZHANG Run-ze. Identification of Blueberry Ripeness Based on Visible-Near Infrared
Spectroscopy and Deep Forest[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3280-3286. |
[4] |
GUO Ya-jing1, LI Xiu-yan2. Density-Functional Theory Study of the Structural and Spectrum
Properties for C15NO4HnIm (n=11, 12, 13, m=4, 3, 2, n+m=15)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3142-3148. |
[5] |
ZHAO Gao-kun1, LI Jia-chen2, WU Yu-ping1*, LI Jun-hui2, KONG Guang-hui1, ZHANG Guang-hai1, YAO Heng1, LI Wei1, GAO Yan-lan1. Application of Near-Infrared Spectroscopy to Analyze the Similarity of Cigar Tobacco From Different Origins[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3195-3198. |
[6] |
WANG Xue1, 2, 4, WANG Zi-wen1, ZHANG Guang-yue1, MA Tie-min1, CHEN Zheng-guang1, YI Shu-juan3, 4, WANG Chang-yuan2. A Universal Model for Quantitative Analysis of Near-Infrared
Spectroscopy Based on Transfer Component Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3213-3221. |
[7] |
MAO Li-yu1, 2, BIN Bin1*, ZHANG Hong-ming2*, LÜ Bo2, 3*, GONG Xue-yu1, YIN Xiang-hui1, SHEN Yong-cai4, FU Jia2, WANG Fu-di2, HU Kui5, SUN Bo2, FAN Yu2, ZENG Chao2, JI Hua-jian2, 3, LIN Zi-chao2, 3. Development of Wheat Component Detector Based on Near Infrared
Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(10): 2768-2777. |
[8] |
JIANG Xiao-gang1, 2, HE Cong1, 2, JIANG Nan3, LI Li-sha1, ZHU Ming-wang1, LIU Yan-de1, 2*. Discrimination of Apple Origin and Prediction of SSC Based on
Multi-Model Decision Fusion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(10): 2812-2818. |
[9] |
MU Liang-yin1, ZHAO Zhong-gai1*, JIN Sai2, SUN Fu-xin2, LIU Fei1. Near-Infrared Prediction Models for Quality Parameters of Culture Broth in Seed Tank During Citric Acid Fermentation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(10): 2819-2826. |
[10] |
GUO Zhi-qiang1, ZHANG Bo-tao1, ZENG Yun-liu2*. Study on Sugar Content Detection of Kiwifruit Using Near-Infrared
Spectroscopy Combined With Stacking Ensemble Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(10): 2932-2940. |
[11] |
ZHU Yu-kang1, LU Chang-hua1, ZHANG Yu-jun2, JIANG Wei-wei1*. Quantitative Method to Near-Infrared Spectroscopy With Multi-Feature Fusion Convolutional Neural Network Based on Wavelength Attention[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(09): 2607-2612. |
[12] |
MAO Ya-chun1, WEN Jie1*, CAO Wang1, DING Rui-bo1, WANG Shi-jia2, FU Yan-hua3, XU Meng-yuan1. Fusion Algorithm Research Based on Imaging Spectrum of Anshan Iron Ore[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(09): 2620-2625. |
[13] |
WENG Ding-kang1, FAN Zheng-xin1, KONG Ling-fei1, SUN Tong1*, YU Wei-wu2. Rapid Identification of Shelled Bad Torreya Grandis Seeds Based on
Visible-Near Infrared Spectroscopy and Chemometrics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(09): 2675-2682. |
[14] |
WU Bin1, XIE Chen-ao2, CHEN Yong2, WU Xiao-hong2, JIA Hong-wen1. Discrimination of Chuzhou Chrysanthemum Tea Grades Using Noise
Discriminant C-Means Clustering[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(08): 2202-2207. |
[15] |
HUANG Ji-chong1, SONG Shao-zhong2*, LIU Chun-yu1, XU Li-Jun1, CHEN An-liang1, LU Ming1, GUO Wen-jing1, MIAO Zhuang1, LI Chang-ming1, TAN Yong1, LIU Zhe3. Research on Identification of Corn Storage Years Based on Raman
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(08): 2166-2173. |
|
|
|
|