|
|
|
|
|
|
Estimation of Chlorophyll Content in Spartina Alterniflora Leaves Based on Continous Wavelet Transformation and Random Forest Algorithm |
GUAN Cheng1, LIU Ming-yue1, 2, 3, 4*, MAN Wei-dong1, 2, 3, 4, ZHANG Yong-bin1, ZHANG Qing-wen1, FANG Hua1, LI Xiang1, GAO Hui-feng1 |
1. College of Mining Engineering, North China University of Science and Technology, Tangshan 063210, China
2. Hebei Industrial Technology Institute of Mine Ecological Remediation, Tangshan 063210, China
3. Collaborative Innovation Center of Green Development and Ecological Restoration of Mineral Resources, Tangshan 063210, China
4. Tangshan Key Laboratory of Resources and Environmental Remote Sensing, Tangshan 063210, China
|
|
|
Abstract Chlorophyll content is a key indicator of the physiological status of plants, and accurate estimation of chlorophyll content is important for characterizing its component content traits and quantifying its physiological status. In this paper, the hyperspectral reflectance and chlorophyll content (SPAD) of Spartina alterniflora in the Duliu-river wetland were used as the data source, the original spectrum was mathematically transformed and processed with continuous wavelet transformation (CWT). The spectral features were extracted using Sequential Projection Algorithm (SPA). And the hyperspectral estimation model of leaf chlorophyll content of Spartina alterniflora was developed based on random forest regression (RFR) algorithm. The results showed that: (1) CWT had more accurate time resolution and higher frequency in the low scale spectra, corresponding to a narrow wavelet function, which could better distinguish the differences between the spectra and highlight the characteristic spectral information. (2) Except for reciprocal and logarithmic first derivative spectrals, the spectral mathematical transform and CWT methods could effectively respond to the spectral detail features. CWT was generally better than the spectral mathematical transform, and the correlation between L10 scale and first derivative spectral reached 0.78 and 0.77. (3) First derivative spectral, reciprocal first derivative spectral, logarithmic derivative spectral and CWT could enhance the ability of spectral estimation of Spartina alterniflora chlorophyll content. The RF models based on first derivative spectral (R2=0.776, RMSE=0.510, RPD=1.893) and CWT with the multiscale of L2, L3 and L4 (R2=0.871, RMSE=0.305, RPD=3.846) were the optimal models. This study shows that hyperspectral techniques could be used as a non-destructive means of detecting chlorophyll content in leaves of Spartina alterniflora, and that the hyperspectral estimation model built by combining multiple scales after continuous wavelet decomposition could more estimate chlorophyll content in leaves of Spartina alterniflora.
|
Received: 2023-07-18
Accepted: 2023-12-22
|
|
Corresponding Authors:
LIU Ming-yue
E-mail: liumy917@ncst.edu.cn
|
|
[1] GENG Guo-biao(耿国彪). Green China(绿色中国), 2023, 4: 8.
[2] CHEN Pan, ZHANG Yan, ZHU Xiao-jing, et al(陈 潘, 张 燕, 朱晓静, 等). Acta Ecologica Sinica(生态学报), 2019, 39(7): 2282.
[3] YU Cai-fen, CHEN Peng-fei, LIU Chang-an, et al(于彩芬, 陈鹏飞, 刘长安, 等). Ocean Development and Management(海洋开发与管理), 2014, 31(8): 85.
[4] REN Hong, LUO Feng, XU Yan, et al(任 红, 罗 丰, 许 彦,等). Journal of Anhui Agricultural Sciences(安徽农业科学), 2014, 40(3): 1455.
[5] SHU Tian, LI Rui-jun, CHEN Zhi-hu, et al(舒 田,黎瑞君,陈智虎,等). Jiangsu Agricultural Sciences(江苏农业科学),2023,51(9):222.
[6] Guo T, Tan C, Li Q, et al. Journal of Ambient Intelligence and Humanized Computing, 2019, 10: 3239.
[7] Cheng J, Yang G, Xu W, et al. Agronomy, 2022, 12(7): 1497.
[8] ZHANG Xue-ru, FENG Mei-chen, YANG Wu-de, et al(张雪茹, 冯美臣, 杨武德, 等). Chinese Journal of Eco-Agriculture(中国生态农业学报), 2017, 25(9): 1351.
[9] GUO Chao-fan, GUO Xiao-yu(郭超凡, 郭逍宇). Acta Ecologica Sinica(生态学报), 2016, 36(20): 6538.
[10] LI Li-jie, YUE Yan-bin, WANG Yan-cang, et al(李莉婕, 岳延滨, 王延仓, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2021, 41(11): 3538.
[11] PEI Hao-jie, FENG Hai-kuan, LI Chang-chun, et al(裴浩杰, 冯海宽, 李长春, 等). Jiangsu Agricultural Sciences(江苏农业科学), 2018, 46(17): 224.
[12] JI Wei-shuai, CHEN Hong-yan, WANG Shu-ting, et al(纪伟帅, 陈红艳, 王淑婷, 等). Chinese Agricultural Science Bulletin(中国农学通报), 2021, 37(22): 143.
[13] Shen R, Zhang B W. MATEC Web of Conference, 2018, 176: 01033.
[14] Sharifzadeh M, Sikinioti-Lock A, Shah N. Renewable and Sustainable Energy Reviews, 2019, 108: 513.
[15] Meacham-Hensold K, Montes C M, Wu J, et al. Remote Sensing of Environment, 2019, 231: 111176.
[16] Zhang J, Zhang D, Cai Z, et al. Computers and Electronics in Agriculture, 2022, 195: 106814.
[17] ZUO Xue-yan, CUI Li-juan, LI Wei, et al(左雪燕, 崔丽娟, 李 伟, 等). Acta Ecologica Sinica(生态学报), 2021, 41(15): 6159.
[18] Tzenios N. ResearchBerg Review of Science and Technology, 2020, 3(1): 94.
[19] FENG Hai-kuan, YANG Fu-qin, YANG Gui-jun, et al(冯海宽, 杨福芹, 杨贵军, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2018, 34(6): 182.
[20] WANG Li-ai, MA Chang, ZHOU Xu-dong, et al(王丽爱, 马 昌, 周旭东, 等). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2015, 46(1): 259.
[21] CHAI Zi-wen, LEI Wei-pan, MO Xun-qiang, et al(柴子文, 雷维蟠, 莫训强, 等). Wetland Science(湿地科学), 2020, 18(6): 667.
[22] ZHOU Xiao-sheng, ZHOU Yue-qin, PANG Lei, et al(周小生,周月琴,庞 磊,等). Journal of Anhui Agricultural University(安徽农业大学学报),2012,39(1):150.
[23] Huang L, Li T, Ding C, et al. Sensors, 2020, 20(10): 2887.
[24] ZHAO Hai-long, GAN Shu, YUAN Xi-ping, et al(赵海龙, 甘 淑, 袁希平, 等). Acta Optica Sinica(光学学报), 2022, 42(22): 209.
[25] TIAN Fu-ying, SUN Ying(田福英, 孙 迎). Journal of Biomedical Engineering(生物医学工程学杂志), 2015, 32(3): 514.
[26] WAN Tao-lei, CHANG Jun-jie(万陶磊, 常俊杰). Nondestructive Testing(无损检测), 2019, 41(11): 43.
[27] SUN Xing-liang, HAO Xiao-hua, WANG Jian, et al(孙兴亮, 郝晓华, 王 建, 等). Journal of Glaciology and Geocryology(冰川冻土), 2022, 44(1): 147.
[28] LI Zhen, WANG Jia-qiang, LI Zi-qin, et al(李 贞,王家强,李紫琴,等). Acta Agriculture Universitatis Jiangxiensis(江西农业大学学报),2023,45(5):1273.
[29] LI Wen-ya(李文雅). Molecular Plant Breeding(分子植物育种), 2022, 20(24): 8586.
|
[1] |
ZHANG Ting-lin, TANG Long, PENG Dong-yu, TANG Hao, JIANG Pan-pan, LIU Bo-tong, CHEN Chuan-jie*. A Diagnostic Method for Electron Density of Plasmas by
Machine-Learning Combined With Stark Broadening[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(10): 2778-2784. |
[2] |
ZHOU Lei-jinyu1, ZHOU Li-na1*, CHEN Li-mei1, KONG Li-juan1, QIAO Jian-lei2, LI Ming-tang3. Visible/Near Infrared Spectroscopic Modeling for Cadmium
Contaminated Lettuce[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(10): 2805-2811. |
[3] |
LIU Ying1, 2, LIU Yu1, YUE Hui1, 2*, BI Yin-li2, 3, PENG Su-ping4, JIA Yu-hao1. Remote Sensing Inversion of Soil Carbon Emissions in Desertification Mining Areas[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(10): 2840-2849. |
[4] |
YUE Ji-bo1, LENG Meng-die1, TIAN Qing-jiu2, GUO Wei1, LIU Yang3, FENG Hai-kuan4, QIAO Hong-bo1*. Estimation of Leaf Physical and Chemical Parameters Based on Hyperspectral Remote Sensing and Deep Learning Technologies[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(10): 2873-2883. |
[5] |
JIANG Yu-heng1, YAN Bo1, ZHUANG Qing-yuan1, WANG Ai-ping1, CAO Shuang1, TIAN An-hong1, 2, FU Cheng-biao1*. Quantitative Inversion Model of Soil Heavy Metals Zn and Ni Based on Fractional Order Derivative[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(10): 2850-2857. |
[6] |
DENG Yun1, 2, WU Wei1, 2, SHI Yuan-yuan3, CHEN Shou-xue1, 2*. Red Soil Organic Matter Content Prediction Model Based on Dilated
Convolutional Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(10): 2941-2952. |
[7] |
XIE Xi-ru1, LUO Hai-jun1, 2*, LI Guo-nan1, FAN Xin-yan1, WANG Kang-yu1, LI Zhong-hong1, WANG Jie1. Near-Infrared Random Forest Classification and Recognition Based on Multi-Feature Fusion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(10): 2858-2864. |
[8] |
FAN Jie-jie1, 2, QIU Chun-xia1, FAN Yi-guang2, CHEN Ri-qiang2, LIU Yang2, BIAN Ming-bo2, MA Yan-peng2, YANG Fu-qin4, FENG Hai-kuan2, 3*. Wheat Yield Prediction Based on Continuous Wavelet Transform and
Machine Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(10): 2890-2899. |
[9] |
LIU Yu-juan1, 2, 3, LIU Yan-da1, 2, 3, YAN Zhen1, 4, ZHANG Zhi-yong1, 2, 3, CAO Yi-ming1, 2, 3, SONG Ying1, 2, 3*. Classification of Hybrid Convolution Hyperspectral Images Based on
Attention Mechanism[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(10): 2916-2922. |
[10] |
LI Xuan1, GAN Shu1, 2*, YUAN Xi-ping2, 3, 4, YANG Min3, 4, GONG Wei-zhen1. Spectral Characteristic and Identification Modelling of Three Typical Wetland Vegetation Along the Seashore of the East Coast of the Erhai Lake[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(09): 2439-2444. |
[11] |
WANG Yan-cang1, 4, 5, 6, ZHU Yu-chen3*, QI Yan-xin1, ZHANG Zhi-tong1, CAO Hui-qiong1, WANG Jin-gao2, GU Xiao-he4, TANG Rui-yin1, HE Yue-jun1, LI Xiao-fang2, LUO Wei1. Hyperspectral Estimation of Leaf Moisture Content in Winter Wheat After Discrete Wavelet Denoising[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(09): 2559-2567. |
[12] |
WEI Yun-peng1, HU Hui-qiang1, MAO Xiao-bo1*, ZHAO Yu-ping2*, ZHANG Lei3, SHENG Wen-tao4. Identification for Different Growth Years of Plastrum Testudinis via Hyperspectral Imaging Technique and Heterogeneous Ensemble Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(09): 2613-2619. |
[13] |
SUN Jia-qi, YIN Yong*, YU Hui-chun, YUAN Yun-xia, GUO Lin-ge. Hyperspectral Prediction Method for Perilla Aldehyde Content in Perilla Frutescens[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(09): 2667-2674. |
[14] |
SUN Yu-tong1, 2, LÜ Shu-qiang1, 2, HOU Miao-le1, 2*. A Mixed Pigment Identification Method Based on Spectra Interval[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(08): 2357-2364. |
[15] |
KONG Li-qin1, 2, NIU Xiao-hu1, 2, WANG Cheng-lei1, 2, FENG Yao-ze1, 2, 3*, ZHU Ming1, 2. Application of Hyperspectral Imaging Technology in the Identification of Composite Adulteration Type in Beef Balls[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(08): 2183-2191. |
|
|
|
|