|
|
|
|
|
|
Applications of Fabry-Perot Interferometer in Remote Sensing Detection |
JIN Kang1, ZHANG Nan1, LIU Bing2* |
1. Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
2. Department of Disease Control and Prevention, Rocket Force Characteristic Medical Center, Beijing 100088, China
|
|
|
Abstract Remote spectral detection is an important way to explore large-scale space and matter, which plays critical roles in astronomy, meteorology, and the deep sea. However, detecting remote and often weak spectra poses high requirements for the performance of spectrometers. According to the spectral performance evaluation standard proposed by Jacquinot, compared with other spectral systems (grating spectrometer, prism spectrometer, etc.), the Fabry Perot (F-P) interferometer has a large aperture and high spectral resolution, which possesses the intrinsic advantage in the field of remote weak light detection. Since Fabry first used the F-P interferometer for astronomical observation in 1914, the F-P interferometer has been widely used in remote spectral measurement, and various improved F-P interferometers have been developed in recent years. Traditional F-P interferometers mainly face three problems when used in remote spectral detection: narrow free spectral range, difficult installation and adjustment of large aperture F-P interferometers, and unconcentrated spectral energy induced by the circular interference structures. This article introduces three typical improved F-P interferometers, including the cascaded F-P interferometer that greatly extends the free spectral range, the rotating scanning F-P interferometer that eases the adjustment and is suitable for extreme environments,and the circle-to-line interferometer optical system(CLIO) that converts interference rings to interference lines with improved energy concentration.This article provides a systematic summary of the important applications of the F-P interferometer in meteorology, astronomy, and the deep sea. In meteorology, a large-aperture F-P interferometer for measuring wind speeds in the atmosphere's mesosphere and thermosphere was introduced, and a German Heisenberg high-precision F-P interferometer for measuring trace gases and their isotopes in the atmosphere was also presented. In astronomy, a cascaded F-P interferometer designed by the University of Wisconsin in the United States for studying interstellar material emission lines was introduced. In the field of oceanography, the main application examples of domestic F-P interferometers for measuring Brillouin scattering were introduced, including the underwater Brillouin scattering system designed by Beijing Normal University in 2004 and the spaceborne Brillouin scattering system designed by Shanghai Jiao Tong University in 2021. Finally, this article proposes that spectral recognition accuracy and thermal stability are difficulties that need to be solved in the future applications of F-P interferometers in remote spectral measurement.
|
Received: 2023-04-21
Accepted: 2023-10-30
|
|
Corresponding Authors:
LIU Bing
E-mail: neaucn@126.com
|
|
[1] Bradač M, Erben T, Schneider P, et al. Astron Astrophys,2005,437:49.
[2] Strassmeier K G, Rice J B. Astronomy and Astrophysics, 1998, 339: 497.
[3] Popovic L ( Cˇ ). New Astronomy Reviews, 2012, 56(2-3): 74.
[4] Durrer R. The Cosmic Microwave Background. Cambridge University Press, 2020: 163.
[5] Popovic L Č, Shapovalova A I, Ilic D, et al. Astronomy & Astrophysics, 2011, 528: A130.
[6] Jarrett A H. Irish Astronomical Journal, 1968, 8: 212.
[7] Chandrasekhar T, Debiprasad C, Desai J N, et al. Optical Engineering, 1988, 27(12): 1088.
[8] Molina R, Núñez J, Cortijo F J, et al. IEEE Signal Processing Magazine, 2001, 18(2): 11.
[9] Ko P, Scott J R, Jovanovic I. Optics Communications, 2015, 357: 95.
[10] Franklin D L, Schlegel W, Rushmer R F. Science, 1961, 134(3478): 564.
[11] Effenberger A J, Scott J R. Applied Optics, 2012, 51(7): B165.
[12] Pantalone B, Kudenov M W. Celestial Mechanics and Dynamical Astronomy, 2018, 130(12): 80.
[13] Tolansky S, Ranade J. Monthly Notices of the Royal Astronomical Society, 1949, 109(1): 86.
[14] Burrage M D, Arvin N, Skinner W R, et al. Journal of Geophysical Research: Space Physics, 1994, 99(A8): 15017.
[15] Hays P B, Abreu V J, Dobbs M E, et al. Journal of Geophysical Research: Atmospheres, 1993, 98(D6): 10713.
[16] Danehy P M, Alderfer D W. Survey of Temperature Measurement Techniques for Studying Underwater Shock Waves. International Symposium on Interdisciplinary Shock Wave Research,2004: 22.
[17] Jones T G, Kaganovich D, Helle M H, et al. Intense Underwater Laser Propagation, Ionization and Heating for Remote Shaped Plasma Generation. 2016 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2016.
[18] Bukin O A, Golik S S, Il'in A A, et al. Atmospheric and Oceanic Optics, 2009, 22(2): 209.
[19] XU Jia-qi, WANG Yuan-qing, XU Yang-rui, et al(许佳琪,王元庆,徐杨睿,等). Infrared and Laser Engineering(红外与激光工程), 2021, 50(6): 20211036.
[20] Gordon H R. Ocean Remote Sensing Using Lasers. US Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1980.
[21] Yuan D, Chen P, Mao Z, et al. Optics Express, 2021, 29(26): 43049.
[22] Labutin T A, Lednev V N, Ilyin A A, et al. Journal of Analytical Atomic Spectrometry, 2016, 31(1): 90.
[23] Angly F E, Felts B, Breitbart M, et al. PLoS Biology, 2006, 4(11): e368.
[24] Schorstein K, Fry E S, Walther T. Applied Physics B, 2009, 97(4): 931.
[25] Rodriguez M, Bourayou R, Méjean G, et al. Physical Review E, 2004, 69(3): 036607.
[26] Huang Y, Harilal S S, Bais A, et al. Progress Towards Machine Learning Methodologies for Laser-Induced Breakdown Spectroscopy with an Emphasis on Soil Analysis. arXiv preprint arXiv: 2208. 07414, 2022.
[27] Gurevich E L, Hergenröder R. Applied Spectroscopy, 2007, 61(10): 233A.
[28] Schaffer C B, Nishimura N, Glezer E N, et al. Optics Express, 2002, 10(3): 196.
[29] Desai J N. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 1984, 93(3): 189.
[30] Jacquinot P. Reports on Progress in Physics, 1960, 23(1): 267.
[31] Sidles J A, Sigg D. Physics Letters A, 2006, 354(3): 167.
[32] Wu Q, Gablehouse R D, Solomon S C, et al. A New Fabry-Perot Interferometer for Upper Atmosphere Research. Instruments, Science, and Methods for Geospace and Planetary Remote Sensing. SPIE, 2004, 5660: 218.
[33] Jacquinot P. Jounal of the Optical Society of the America, 1954, 44(10): 761.
[34] WANG Ai-guo, TIAN Yan-ling, LI Xin-e(王爱国, 田艳玲, 李新娥). Metrology & Measurement Technology(计测技术), 2005, 25(6): 25.
[35] Poulter G, Jennings R E. Infrared Physics, 1983, 23(1): 43.
[36] Roesler F L. 12. Fabry-Perot Instruments for Astronomy. Methods in Experimental Physics. Academic Press, 1974, 12: 531.
[37] Xia G, Wu Z, Liu M, et al. Optik, 2003, 114(12): 521.
[38] Chabbal R V. Journal de Physique et le Radium, 1958, 19(3): 295.
[39] Hernandez G. Applied Optics, 1966, 5(11): 1745.
[40] Palik E D, Boukari H, Gammon R W. Applied Optics, 1996, 35(1): 38.
[41] Cleary J W, Fredricksen C J, Muravjov A V, et al. Scanning Fabry-Perot Filter for Terahertz Spectroscopy Based on Silicon Dielectric Mirrors. Terahertz and Gigahertz Electronics and Photonics VI. SPIE, 2007, 6472: 64720E.
[42] Bates D R, Spitzer L. The Astrophysical Journal, 1951, 113(3): 441.
[43] Kuhn H. Journal de Physique et le Radium, 1950, 11(7): 425.
[44] Chiao R Y, Townes C H, Stoicheff B P. Physical Review Letters, 1964, 12(21): 592.
[45] Bradley D J, Bates B, Juulman C O L, et al. Journal de Physique Colloques, 1967, 28(C2): C2-280.
[46] Vaughan A H. Annual Review of Astronomy and Astrophysics, 1967, 5: 139.
[47] Platz P. Applied Optics, 1967, 6(7): 1205.
[48] Hirschberg J G, Byrne J D. Rapid Underwater Oceanmeasurements Using Brillouin Scattering. Ocean Optics VII. SPIE, 1984, 489: 270.
[49] Pogge R W, Atwood B, Byard P L, et al. Publications of the Astronomical Society of the Pacific, 1995, 107(718): 1226.
[50] Skelton B P, Waller W H, Gelderman R F, et al. Publications of the Astronomical Society of the Pacific, 1999, 111(758): 465.
[51] Bland J, Tully R B. The Astronomical Journal, 1989, 98: 723.
[52] Haffner L M, Reynolds R J, Tufte S L, et al. The Astrophysical Journal Supplement Series, 2003, 149(2): 405.
[53] Rangwala N, Williams T B, Pietraszewski C, et al. arXiv preprint arXiv: 0710. 3750, 2007.
[54] Cavallini F. Solar Physics, 2006, 236(2): 415.
[55] Puschmann K G, Denker C J, Balthasar H, et al. Optical Engineering, 2013, 52(8): 081606.
[56] Veenendaal I, Naylor D, Gom B, et al. Review of Scientific Instruments, 2020, 91(8): 083108
[57] Fisher D J, Makela J J, Meriwether J W, et al. Journal of Geophysical Research: Space Physics, 2015, 120(8): 6679.
[58] Poglitsch A, Beeman J W, Geiz N, et al. International Journal of Infrared and Millimeter Waves,1991, 12: 859.
[59] Koreeda A, Saikan S. Review of Scientific Instruments, 2011, 82(12): 126103.
[60] Wu J, Wang J, Hays P B. Applied Optics, 1994, 33(34): 7823.
[61] McKay J A. Applied Optics, 1999, 38(27): 5851.
[62] Aschauer R, Asenbaum A, Geri H. Applied Optics, 1990, 29(7): 953.
[63] Hays P B. Applied Optics, 1990, 29(10): 1482.
[64] Mock R, Hillebrands B, Sandercock R. Journal of Physics E: Scientific Instruments, 1987, 20(6): 656.
[65] Shiokawa K, Otsuka Y, Oyama S, et al. Earth, Planets and Space, 2012, 64(11): 1033.
[66] Nakamura Y, Shiokawa K, Otsuka Y, et al. Earth, Planets and Space, 2017, 69: 57.
[67] Kuhn J, Bobrowski N, Wagner T, et al. Atmospheric Measurement Techniques, 2021, 14(12): 7873.
[68] Mahavarkar P, Sriram S, Joshi B, et al. Results in Optics, 2023, 13: 100524.
[69] Mock R, Hillebrands B, Sandercock R. Journal of Physics E: Scientific Instruments, 1987, 20(6): 656.
[70] Comez L, Masciovecchio C, Monaco G, et al. Solid State Physics,2012, 63: 1.
[71] Gong W, Dai R, Sun Z, et al. Applied Physics B, 2004, 79(5): 635.
[72] Shi J, Ouyang M, Gong W, et al. Applied Physics B, 2008, 90(3): 569.
[73] JIN Kang, ZHAO Xing, ZHANG Nan, et al(金 康, 赵 星, 张 楠, 等). Chinese Journal of Lasers(中国激光), 2023, 50(7): 0708006.
[74] Zhang Z, Yan J, Kuriyagawa T. International Journal of Extreme Manufacturing, 2019, 1(2): 022001.
[75] Li S, Di H, Wang Q, et al. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 256: 107298.
|
[1] |
JI Wen-jie, TAN Zhong-wei*. Research on Angular Dispersion Uniformity Based on the Virtual Image Phase Array Used in Spectral Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(07): 1827-1834. |
[2] |
HU Chun-qiao1, 2, LUO Yu-han1*, SONG Run-ze1, 2, CHANG Zhen1, XI Liang1, ZHOU Hai-jin1, SI Fu-qi1. Study on Ground-Based Fast IDOAS for Monitoring the Distribution of Pollutants Discharged From Ship[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1537-1545. |
[3] |
LIANG Ran, ZHANG Xin-rui, DING Chen-xin, SU Bo*, ZHANG Cun-lin. Terahertz Characteristics of External Magnetic Field and Temperature of Magnetic Fluid Based on Microfluidic Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1532-1536. |
[4] |
ZHANGZHU Shan-ying1, 2, 3, ZHANG Ruo-jing1, 2, 3, GU Han-wen5, XIE Qin-lan1, 2, 3*, ZHANG Xian-wen4*, SA Ji-ming5, LIU Yi6, 3. Research on the Twin Check Abnormal Sample Detection Method of
Mid-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1546-1552. |
[5] |
LIU Xiao-song1, 2, ZHAO Guo-zhong1*, QU Yuan2. Vibrational Mode Analysis of Leucine and Isoleucine Terahertz Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1255-1261. |
[6] |
GE Qing, LIU Jin*, HAN Tong-shuai, LIU Wen-bo, LIU Rong, XU Ke-xin. Influence of Medium's Optical Properties on Glucose Detection
Sensitivity in Tissue Phantoms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1262-1268. |
[7] |
HUANG Qian, SU Ge-yi, SUN Cun-jin, DENG Fei, CHEN Jun, YANG Hui-nan, SU Ming-xu*. Monte Carlo Extinction Model and Inversion Method for Mixed Particle System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 956-962. |
[8] |
YUN Sheng1, 2, ZHANG Yuan1, 4, ZHANG Sheng4, ZHANG Zhi-bin1, 4, DENG Yan-yan1, 2, TIAN Liang3, LIU Zhao-hong1, 2, LIU Shuo1, 2, ZHANG Yong2, WANG Yu-lei1, 2, LÜ Zhi-wei1, 2, XIA Yuan-qin1, 2, 4*. Research Progress of Femtosecond Coherent Anti-Stokes Raman Scattering Spectroscopy Thermometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 901-909. |
[9] |
CAO Zhen1, 2, YU Xin1, 2, PENG Jiang-bo1, 2*, LIU Qiang3, YANG Shun-hua4, ZHANG Shun-ping4, ZHAO Yan-hui4, LI Pei-lin3, GAO Long1, 2, ZHANG Shan-chun1, 2. A Burst-Mode Ultraviolet Laser System for High-Speed PLIF
Measurements in Large-Scale Model Engine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 932-936. |
[10] |
LI Jian-kang1, 2, FU Jia2*, XIANG Dong1, LÜ Bo2, YIN Xiang-hui1, LI Ying-ying3, WANG Jin-fang2, FU Sheng-yu2, LI Yi-chao2, LIN Zi-chao2, LU Xing-qiang1, 4. Study of Neutral Beam Attenuation Characteristics by Beam Emission Spectroscopy on EAST[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 945-951. |
[11] |
JIANG Yue-peng, CAO Yun-hua*, WU Zhen-sen, CAO Yi-sen, HU Sui-jing. Measurement of Mid-Wave Infrared Hyperspectral Imaging
Characteristics of Ground Targets[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 937-944. |
[12] |
ZHANG Zhen-rong, FANG Bo-lang, LI Guo-hua, YE Jing-feng, WANG Sheng. Time-Resolved Dynamic Spectroscopy Measurement for Laser Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 952-955. |
[13] |
GUO Song-jie1, WANG Lu-peng2, CHEN Jin-zheng1, MA Yun2, LIANG An2, LU Zhi-min1, YAO Shun-chun1*. Application and Analysis of Multi-Component Simultaneous Measurement of Forest Combustibles Pyrolysis Gas Based on TDLAS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(03): 625-631. |
[14] |
BAI Bing1, 2, 3, CHEN Guo-zhu2, 3, YANG Wen-bin2, 3, CHE Qing-feng2, 3, WANG Lin-sen2, 3, SUN Wei-min1*, CHEN Shuang1, 2, 3*. The Study on Precise and Quantitative Measurement of Flame OHConcentration by CRDS-CARS-PLIF Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3955-3962. |
[15] |
TIAN Fu-chao1, CHEN Lei2*, PEI Huan2, BAI Jie-qi1, ZENG Wen2. Study of Factors Influencing the Length of Argon Plasma Jets at
Atmospheric Pressure With Needle Ring Electrodes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3682-3689. |
|
|
|
|