|
|
|
|
|
|
Surface Solar Spectral Observation Along 30°N in China |
PU Do-wang, Lagba Tunzhup, SHENG Min, LIU Juan, WANG Qian, WANG Meng-meng, ZHOU Yi, LU Han-yuTsoja Wangmu, Norsang Gelsor* |
Solar UV Lab, Tibet University, Lhasa 850000, China
|
|
|
Abstract We conduct observation and research on ground solar radiation using the international standard RAMSES spectrometers and CMP11 global solar radiometers for 8 cities (Ngari, Shigaze, Lhasa, Nyingchi, Chengdu, Wuhan, Hangzhou, Shanghai) along the 30°N latitude region of China during 2019 and 2020. Observation results show that along the 30 °N region in China, Tibet’s overall solar spectrum intensities are not only much higher than that of low altitude inland cities, but also the spectral curves are smoother and less absorbed than that at low altitude in terms of morphological characteristics. During the observation period, the maximum monochromatic solar spectral intensity on the ground in Tibet reached 2 018.48 mW·(m2·nm)-1 (Ngari, Jun.21, 2020), and the maximum monochromatic solar spectral intensity in other mainland cities at the same latitude is only 756.22 mW·(m2·nm)-1(Chengdu, Nov. 3, 2019); The ultraviolet spectra (280-400nm) contained in the ground solar spectra of Tibet is about 1.5 times higher than that of the low altitude in the mainland. The strong ultraviolet has a corresponding impact on the ecology and human health in Tibet; It is found that during the observation, the ground solar spectral intensity of Lhasa is about 1.5~1.7 times than that of Chengdu; The ground solar spectral intensity of Ngari is about 0.2 times higher than that of Shanghai. The observation results provide field solar spectral data for the utilization of solar energy resources and ecological environment research in the 30°N latitude region; We conduct observational studies synchronously to the solar spectrum of the solar eclipse during the summer solstice in 2020. It is found that the radiation energy loss in Lhasa and Ngari during the solar eclipse is more than 95%. The effects of atmospheric factors such as clouds and aerosols on the solar spectrum and total solar radiation are analyzed. The work shows that the global solar radiation value in Ngari and other places in Tibet frequently exceeds the solar constant during the summers.
|
Received: 2022-03-17
Accepted: 2022-07-12
|
|
Corresponding Authors:
Norsang Gelsor
E-mail: 2218473811@qq.com
|
|
[1] Norsang G, Ma L W, Dahlback A, et al. Photochemistry & Photobiology, 2009, 85: 1028.
[2] Elizabeth Hughes, Jean Alric, Vladimir Yurkov. Photosynthesis Rsearch, 2020, 144(3): 341.
[3] Sinitsyn D S, Nazarov D A, Tarasov O, et al. Thermal Engineering, 2022, 69(3): 173.
[4] Nuozhen Gelsor, Norsang Gelsor, Tsoja Wangmo, et al. Solar Energy, 2018, 173: 984.
[5] Norsang G, JIN Ya-ming, Tsija W, et al(诺 桑,晋亚铭,措加旺姆,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2019, 39(6):1683.
[6] ZHOU Yi, Norsang G, WANG Qian, et al(周 毅,诺 桑,王 倩,等). Journal of Earth Environment(地球环境学报), 2021, 12(5): 549.
[7] CHEN Yi-na, ZHAO Pu-sheng, HE Di, et al(陈一娜,赵普生,何 迪,等). Environmental Science(环境科学), 2015,(10): 3582.
[8] QI Yue, FANG Shi-bo, ZHOU Wen-zuo(齐 月,房世波,周文佐). Acta Ecologica Sinica(生态学报), 2014, 34(24): 7444.
[9] SHEN Zhong-ping, ZHANG Hua(沈钟平,张 华). Acta Energiae Solaris Sinica(太阳能学报), 2009, 30(10): 1209.
[10] LI Chao, GONG Yuan-fa, et al(李 超,巩远发,等). Journal of Chengdu University of Information Technology(成都气象学院学报), 2000, 15(2): 107.
[11] ZHAO Di, Norsang G, Tsoja W, et al(赵 地,诺 桑,措加旺姆,等). Journal of Atmospheric and Environmental Optics(大气与环境光学学报), 2018, 13(2): 81.
|
[1] |
YANG Xing-chen1, LEI Shao-gang1*, XU Jun2, SU Zhao-rui3, WANG Wei-zhong3, GONG Chuan-gang4, ZHAO Yi-bo1. Estimation of Plants Beta Diversity in Meadow Prairie Based on
Hyperspectral Remote Sensing Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1751-1761. |
[2] |
ZHANG Yong1, 2, 3, XU Han-lie1, 2, ZHANG Li-jun1, 2, LI Yuan1, 2, SUN Ling1, 2, QIN Dan-yu1, 2, RONG Zhi-guo1, 2, HU Xiu-qing1, 2, LU Qi-feng4, LU Nai-meng1, 2. Measurements of CRCS Dunhuang Gobi Surface Reflectance Spectrum
Using Multi-Rotor UAV and Its Calibration Evaluations[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1439-1448. |
[3] |
WANG Dao-qi1,WANG Hou-mao2,HE Wei-wei1,HU Xiang-rui1,LI Juan3,LI Fa-quan4,WU Kui-jun1*. Radiative Transfer Characteristics of the 1.27 μm O2(a1Δg) Airglow in Limb-Viewing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 1088-1097. |
[4] |
Lagba Tunzhup, Tsoja Wangmu*, WANG Qian, SHENG Min, WANG Meng-meng, Norsang Geslor. Annual Variation of Solar Spectra in Tibet[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(02): 460-466. |
[5] |
CHEN Hao1, 2, WANG Hao3*, HAN Wei3, GU Song-yan4, ZHANG Peng4, KANG Zhi-ming1. Impact Analysis of Microwave Real Spectral Response on Rapid Radiance Simulation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3260-3265. |
[6] |
WANG Yu1, 2, ZHANG Xian-ke1, 2, TAN Tu1, WANG Gui-shi1, LIU Kun1, SUN Wan-qi3*, QIU Zi-chen4, GAO Xiao-ming1, 2. Research on Moving Observation of Typical Greenhouse Gas Sources in Hefei by Using Off-Axis Integrated Cavity[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3293-3301. |
[7] |
WANG Jie1, 2, 3, LIU Wen-qing1, 2, 4, ZHANG Tian-shu1, XIA Jian-dong5, DENG Wei5, HU Wen-jie5. Collaborative Observation of Vertical Structures of Ozone and Aerosol in a Dust Episode Based on Lidar[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2258-2265. |
[8] |
ZHANG Zhi-dong1, 2, XIE Pin-hua1, 2, 3*, LI Ang2, QIN Min2, FANG Wu2, DUAN Jun2, HU Zhao-kun2, TIAN Xin4LÜ Yin-sheng1, 2, REN Hong-mei2, REN Bo1, 2, HU Feng1, 2. Study of SO2 and NOx Distribution and Emission in Tangshan Based on Mobile DOAS Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1651-1660. |
[9] |
SUN Wei-min1, CHEN Xu-dong1, YAN Qi1, 2*, GENG Tao1, YAN Yun-xiang1, 3, WANG Sheng-jia1, WANG An-zhi1, WANG Jia-bin1, JIN Xi-ren1, JIANG Hang1, WANG Xiu1, ZHAO Chuang1, ZHONG Yue4, LIANG Yu4, SONG Zhi-ming4, WANG Peng-fei1. Fiber Integral Field Unit System for Measurement of Solar Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1168-1174. |
[10] |
LEI Ming1, SUN Mei-ling3*, NIE Kai2, LIU Xu-lin2*. Design of Measurement and Observation System Based on Digital Camera[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2187-2193. |
[11] |
WANG Chun-juan1, 2, ZHOU Bin1, 2*, ZHENG Yao-yao3, YU Zhi-feng1, 2. Navigation Observation of Reflectance Spectrum of Water Surface in Inland Rivers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 878-883. |
[12] |
WANG Qian, Norsang Gelsor*, Tsoja Wangmu, Lagba Tunzhup, Pu Dopwang, LIU Juan, ZHOU Yi, ZE Xi. Solar Radiation Observation During a Solar Eclipse in Tibet[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3892-3900. |
[13] |
LI Tian-zi2, LIU Shan-jun1*, SONG Liang3, WANG Dong1, HUANG Jian-wei4, YU Mo-li1. Experimental Study on the Effect of Observation Angle on Thermal Infrared Spectral Unmixing of Rock[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1769-1774. |
[14] |
ZHENG Jin-yu, CHEN Tao*, CHEN Qian, LI Meng-yang, YAO Chun-mao. Mineralogical and Spectroscopic Characteristics of “Ivory Jade” From Tibet[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(09): 2908-2912. |
[15] |
YU Miao1, LU Peng1*,CAO Xiao-wei1, TANG Ming-guang1, WANG Qing-kai1, LI Zhi-jun1, 2. Field Observations of the Bidirectional Reflectance Characteristics of Lake Ice[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(08): 2453-2461. |
|
|
|
|