|
|
|
|
|
|
Synthesis, Spectroscopic Characterization, Thermogravimetric and Biological Activity Evaluation of Te(Ⅳ), Se(Ⅳ), V(Ⅲ), Nb(Ⅴ), Ta(Ⅴ) Complexes With Indole-3-Acetic Acid Plant Hormone Ligand |
Jehan Y. Al-Humaidi1, Foziah A. Al-Saif1, Dalal N. Binjawhar1, Hanan A. Bakhsh1,Moamen S. Refat2* |
1. Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
2. Department of Chemistry, Faculty of Science, Taif University, Al-Haweiah 21974, Taif, Saudi Arabia |
|
|
Abstract Te(Ⅳ), Se(Ⅳ), V(Ⅲ), Nb(Ⅴ) and Ta(Ⅴ) complexes of indole-3-acetic acid (IAAH) ligand were synthesized, characterized by elemental analysis and various spectroscopic techniques like, IR, 1H-NMR, X-ray powder diffraction, UV-Visible, thermogravimetry analysis, magnetic measurements, molar conductance and surface morphology using SEM. All the synthesized complexes of IAAH ligand have 1∶2 stoichiometry of the types [Te(IAA)2(NH3)2]·2Cl (Ⅰ), [Se(IAA)2(NH3)2]·2Cl (Ⅱ), [V(IAA)2(NH3)(Cl)] (Ⅲ), [Nb(IAA)2(Cl)3] (Ⅳ), and [Ta(IAA)2(Cl)3] (Ⅴ). Spectral analysis indicates octahedral geometry for the Te(Ⅳ), Se(Ⅳ) and V(Ⅲ) complexes, whereas both Nb(Ⅴ) and Ta(Ⅴ) have a seven-coordination. The bonding sites are the oxygen atoms of carboxylate group for the deprotonated indole-3-acetic acid (IAA) ligand. The thermogravimetry analysis studies gave evidence for the presence of other coordinated molecules (Cl or NH3) in the composition of IAA complexes, which were further supported by IR and micro analytical measurements. The higher molar conductance data of tellurium and selenium (Ⅳ) complexes reveal that these chelates are electrolytes, while low conductivity values for the vanadium(Ⅲ), niobium and tantalum(Ⅴ) chelates indicated a non-electrolytes. To test the antibacterial property of the five complexes in this study, four bacterial strains Klebsiella (G-), Escherichia coli (G-), Staphylococcus aureus (G+) and Staphylococcus epidermidis (G+) were used in the investigation. The effects of the five complexes in the cytotoxicity of Caco-2 and Mcf-7 human cancer cell lines were studied Neutral red uptake assay for the estimation of cell viability/cytotoxicity protocol.
|
Received: 2020-02-16
Accepted: 2020-06-10
|
|
Corresponding Authors:
Moamen S. Refat
E-mail: msrefat@yahoo.com
|
|
[1] Quint M, Gray W M. Curr. Opin. Plant Biol., 2006, 9: 448.
[2] Zhao Y. Annu. Rev. Plant. Biol., 2010, 61: 49.
[3] Jiang Y, Wu Y, Hu N, et al. Appl. Soil Ecology, 2020, 147: Article 103447.
[4] Ran J, Zheng W, Wang H, et al. Ecotoxicology and Environmental Safety, 2020,19115:Article 110213.
[5] Lin H R, Shu H Y, Lin G H. Microbiological Research, 2018, 216: 30.
[6] Kochar M, Upadhyay A, Srivastava S. Research in Microbiology, 2011,162(4):426.
[7] Al-Saif F A, Alibrahim K A, Alfurhood J A, et al. J. Mol. Liq., 2018,249:438.
[8] Alibrahim K A, Al-Saif F A, Alghamdi M T, et al. RSC Advances, 2018,8(40):22515.
[9] Al-Saif F A, Alibrahim K A, Alosaimi E H, et al. J. Mol. Liq., 2018,266:242.
[10] Kamnev A A, Shchelochkov A G, Perfiliev Y D, et al. J. Mol. Struct., 2001,563-564:565.
[11] Pathak A, Blair V L, Ferrero R L, et al. J. Inorg. Biochem., 2017,177:266.
[12] Xing N, Xu L T, Bai F Y, et al Inorg. Chim. Acta, 20014,409, Part B:360.
[13] Bauer A W, Kirby W A, Sherris C, et al. Am. J. Clin. Pathology, 1996,45:493.
[14] Repetto G, del Peso A, Zurita J L. Neutral Red Uptake Assay for the Estimation of Cell Viability/Cytotoxicity, Nature Protocols, 2008.
[15] El-Habeeb A A, Refat M S. J. Mol. Struct., 2019, 1175: 65.
[16] Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, fourth ed., Wiley, New York, 1986.
[17] Deacon G B, Philips R J. Coord. Chem. Rev., 1980, 33: 227.
[18] Lever A B P. Electronic Spectra of dn Ions Inorganic Electronic Spectroscopy. 2nd Ed. 1984.
[19] Gust K R, Knox J E, Heeg M J, et al. Eur. J. Inorg. Chem., 2002,9:2327.
[20] Kumar S, Syed A, Andotra S, et al. J. Mol. Struct.,2018,1154:165.
[21] Cullity B D, Stock S R. Elements of X-ray Diffraction, 3rd ed., New York: Prentice Hall,2001. 389. |
[1] |
GU Yi-lu1, 2,PEI Jing-cheng1, 2*,ZHANG Yu-hui1, 2,YIN Xi-yan1, 2,YU Min-da1, 2, LAI Xiao-jing1, 2. Gemological and Spectral Characterization of Yellowish Green Apatite From Mexico[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 181-187. |
[2] |
XU Qi-lei, GUO Lu-yu, DU Kang, SHAN Bao-ming, ZHANG Fang-kun*. A Hybrid Shrinkage Strategy Based on Variable Stable Weighted for Solution Concentration Measurement in Crystallization Via ATR-FTIR Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1413-1418. |
[3] |
KAN Yu-na1, LÜ Si-qi1, SHEN Zhe1, ZHANG Yi-meng1, WU Qin-xian1, PAN Ming-zhu1, 2*, ZHAI Sheng-cheng1, 2*. Study on Polyols Liquefaction Process of Chinese Sweet Gum (Liquidambar formosana) Fruit by FTIR Spectra With Principal Component Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1212-1217. |
[4] |
YAN Li-dong1, ZHU Ya-ming1*, CHENG Jun-xia1, GAO Li-juan1, BAI Yong-hui2, ZHAO Xue-fei1*. Study on the Correlation Between Pyrolysis Characteristics and Molecular Structure of Lignite Thermal Extract[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 962-968. |
[5] |
FENG Xin1, 2, FANG Chao1*, GONG Hai-feng2, LOU Xi-cheng1, PENG Ye1. Infrared and Visible Image Fusion Based on Two-Scale Decomposition and
Saliency Extraction[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 590-596. |
[6] |
LI Zong-xiang1, 2, ZHANG Ming-qian1*, YANG Zhi-bin1, DING Cong1, LIU Yu1, HUANG Ge1. Application of FTIR and XRD in Coal Structural Analysis of Fault
Tectonic[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 657-664. |
[7] |
CHENG Xiao-xiao1, 2, LIU Jian-guo1, XU Liang1*, XU Han-yang1, JIN Ling1, SHEN Xian-chun1, SUN Yong-feng1. Quantitative Analysis and Source of Trans-Boundary Gas Pollution in Industrial Park[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3762-3769. |
[8] |
ZHANG Hao1, 2, HAN Wei-sheng1, CHENG Zheng-ming3, FAN Wei-wei1, LONG Hong-ming2, LIU Zi-min4, ZHANG Gui-wen5. Thermal Oxidative Aging Mechanism of Modified Steel Slag/Rubber Composites Based on SEM and FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3906-3912. |
[9] |
CHEN Jing-yi1, ZHU Nan2, ZAN Jia-nan3, XIAO Zi-kang1, ZHENG Jing1, LIU Chang1, SHEN Rui1, WANG Fang1, 3*, LIU Yun-fei3, JIANG Ling3. IR Characterizations of Ribavirin, Chloroquine Diphosphate and
Abidol Hydrochloride[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2047-2055. |
[10] |
MA Fang1, HUANG An-min2, ZHANG Qiu-hui1*. Discrimination of Four Black Heartwoods Using FTIR Spectroscopy and
Clustering Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1915-1921. |
[11] |
FAN Chun-hui1, 2, ZHENG Jin-huan3, LIU Hong-xin1. FTIR, 2D-IR and XPS Analyses on the Mechanism of Protoplast Derived From Calendula Officinalis in Response to Lead and Cadmium in Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1420-1425. |
[12] |
YANG Yan-ling1, Andy Hsitien Shen1, FAN Yu-rong2, HUANG Wei-zhi1, PEI Jing-cheng1*. UV-Vis-NIR Spectroscopic Characteristics of Vanadium-Rich
Hydrothermal Synthetic Emeralds From Russia[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1199-1203. |
[13] |
ZHANG Dian-kai1, LI Yan-hong1*, ZI Chang-yu1, ZHANG Yuan-qin1, YANG Rong1, TIAN Guo-cai2, ZHAO Wen-bo1. Molecular Structure and Molecular Simulation of Eshan Lignite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1293-1298. |
[14] |
WANG Fang-fang1, ZHANG Xiao-dong1, 2*, PING Xiao-duo1, ZHANG Shuo1, LIU Xiao1, 2. Effect of Acidification Pretreatment on the Composition and Structure of Soluble Organic Matter in Coking Coal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 896-903. |
[15] |
HU Chao-shuai1, XU Yun-liang1, CHU Hong-yu1, CHENG Jun-xia1, GAO Li-juan1, ZHU Ya-ming1, 2*, ZHAO Xue-fei1, 2*. FTIR Analysis of the Correlation Between the Pyrolysis Characteristics and Molecular Structure of Ultrasonic Extraction Derived From Mid-Temperature Pitch[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 889-895. |
|
|
|
|