|
|
|
|
|
|
Application and Development of Photothermal Based Microscopy in Single Particle Detection |
LI Shao-hua1, ZHAO Hong-xia1, WEN Chen1, DING Zhi-qun1, WANG Jing-rui1, CHENG Pei-hong1, 2* |
1. School of Electronics and Information Engineering, Ningbo University of Technology, Ningbo 315211, China
2. State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract High sensitive single particle/molecule detection technique is an important prerequisite for nanoparticle application in biomedicine, chemistry and optoelectronics. Common single particle detection techniques include optical microscopy and spectroscopy based on fluorescence, Raman scattering, Rayleigh scattering, and absorption signals from single particle or molecule. Raman and fluorescence spectra analysis are applicable to fluorescence molecules or molecules with SERS activity. However, even for organic dye and semiconductor nanoparticles with high fluorescence efficiency, inherent photobleaching and blinking is a challenge for single particle detection. Scattering based technique is another solution for single particle detection, but as the scattering signal decreases with the particles size with the sixth power, it is difficult to separate the scattering signal of small size particle from background scattering noise. As we known, the light absorption of medium will induce refractive index change, and a refractive index gradient distribution will be present in the light heating zone. This phenomenon is known as the photothermal effect. Microscopy based on particle or molecule light absorption induced thermal effect has the merit of high sensitivity, freedom from background scattering, in-situ and label-free. It has been demonstrated potential application in single-particle/molecule detection field. In this paper, the application and development of photothermal based microscopy and spectroscopy was summarized. Firstly, the measurement principle was introduced. Then experimental set-ups of several different techniques including photothermal lens, differential interference contrast and photothermal heterodyne were discussed. The signal-noise ratio, sensitivity and resolution of these techniques were compared, and the recent investigations on applications of these techniques to single particle detection were also introduced. And then the recent research progresses in improve photothermal microscopy was elaborated, including signal/noise ratio increasing, dynamic measurement improvement and infrared spectrum expanding. Finally, the challenge for the photothermal technique used in single particle detection was summarized briefly.
|
Received: 2019-12-26
Accepted: 2020-03-17
|
|
Corresponding Authors:
CHENG Pei-hong
E-mail: peihongcheng@163.com
|
|
[1] Hsu S W, Rodarte A L, Som M, et al. Chemical Reviews, 2018, 118: 3100.
[2] Ding Liang, Alan M Bond, Zhai Jianping, et al. Analytica Chimica Acta, 2013, 797: 1.
[3] FENG Shi-liang, WANG Jing-yu, CHEN Shu, et al(冯仕靓,王靖宇,陈 舒,等). Acta Physica Sinica(物理学报),2019,68(14): 147801.
[4] Wei Hong, Pan Deng, Zhang Shunping, et al. Chemical Reviews, 2018, 118: 2882.
[5] YUAN Ting-lian, JIANG Ying-yan, WANG Wei(袁婷联,蒋莹琰,王 伟). Progress in Chemistry(化学进展),2016,28(5): 607.
[6] Marc Vendrell, Kaustabh Kumar Maiti, Kevin Dhaliwal, et al. Trends in Biotechnology, 2013, 31: 249.
[7] Zhang Kenneth Yin, Yu Qi, Wei Huanjie, et al. Chemical Reviews, 2018, 118: 1770.
[8] Jaime Ortega Arroyo,Philipp Kukura. Nature Photonics, 2016, 10: 11.
[9] WANG Yong-jie, WANG Wei(王咏婕,王 伟). Acta Chimica Sinica(化学学报),2017,75(11): 1061.
[10] Jaime Ortega-Arroyo,Philipp KuKura. Phys. Chem. Chem. Phys., 2012, 14:15625.
[11] Konan Peck, Michael D Morris. Anal. Chem., 1986, 58: 2876.
[12] Jackson W B, Amer N M, Boccara A C, et al. Applied Optics, 1981, 20:1333.
[13] Andreas Mandelis. J. Appl. Phys.,1983, 54:3404.
[14] Whinnery J R. Accounts of Chem. Res., 1974, 7: 225.
[15] Castillo J, Fernandez A,Mujica V. Mikrochim. Acta, 1998, 130: 105.
[16] Swofford R L, Morrell J A. J. Appl. Phys., 1978, 49: 3667.
[17] Jun Miyazaki, Hiromichi Tsurui, Koshi Kawasumi, et al. Optics Express, 2014, 22:18833.
[18] Stéphane Berciaud, David Lasne, Gerhard A Blab, et al. Physical Review B, 2006, 73:045424.
[19] Markus Selmke, Marco Braun, Frank Cichos. J. Opt. Soc. Am. A, 2012, 29: 2237.
[20] Wu Jiaqi, Takehiko Kitamori,Tsuguo Sawada. Appl. Phys. Lett., 1990, 57: 22.
[21] Wu Jiaqi, Takehiko Kitamori, Tsuguo Sawada. J. Appl. Phys., 1991, 69: 7015.
[22] Masaaki Harada, Kouji Iwamoto, Takehiko Kitamori, et al. Anal. Chem.,1993, 65:2938.
[23] Masaaki Harada, Masashi Shibata, Takehiko Kitamori, et al. Analytica Chimica Acta, 1995, 299:343.
[24] Fang H L,Swofford R L. Ultrasensitive Laser Spectroscopy. Academic Press, New York, 1983. 175.
[25] Manabu Tokeshi, Marika Uchida, Kenji Uchiyama, et al. Journal of Luminescence, 1999, 83-84:261.
[26] Kazuma Mawatari, Takehiko Kitamori, Tsuguo Sawada, et al. Anal. Chem. 1998, 70:5037.
[27] Manabu Tokeshi, Marika Uchida, Akihide Hibara, et al. Anal. Chem., 2001, 73: 2112.
[28] Hiroko Kimura, Fumiko Nagao, Asako Kitamura, et al. Analytical Biochemistry, 2000, 283:27.
[29] Uchiyama K, Hibara A, Kimura H, et al. Jpn. J. Appl. Phys.,2000, 39:5316.
[30] David Boyer, Philippe Tamarat, Abdelhamid Maali, et al. Science, 2002, 297:1160.
[31] Gleyzes P, Boccara A C, Saint-Jalmes H. Optics Letters, 1997, 22: 1529.
[32] Hisashi Shimizu, Kazuma Mawatari, Takehiko Kitamori. Anal. Chem., 2009, 81: 9802.
[33] Stéphane Berciaud, Laurent Cognet, Gerhard A Blab, et al. Physics Review Letters,2004,93:257402.
[34] Stéphane Berciaud, David Lasne, Gerhard A Blab, et al. Physical Review B, 2006, 73:045424.
[35] Cognet L,Lounis B. Gold Bulletin, 2008, 41(2): 139.
[36] Stéphane Berciaud, Laurent Cognet, Philippe Tamarat, et al. Nano Letters, 2005, 5:515.
[37] Stéphane Berciaud, Laurent Cognet, Brahim Louni. Nano Letters, 2005, 5:2160.
[38] Stéphane Berciaud, Laurent Cognet, Brahim Lounis. Physical Review Letters, 2008, 101:077402.
[39] Stéphane Berciaud, Laurent Cognet, Philippe Poulin, et al. Nano Letters, 2007, 7:1203.
[40] Jay Giblin, Muhammad Syed, Michael T Banning, et al. ACS Nano, 2010, 4:358.
[41] Gaiduk A, Yorulmaz M, Ruijgrok P V, et al. Science, 2010, 330:353.
[42] Mustafa Yorulmaz, Sara Nizzero, Anneli Hoggard, et al. Nano Letters, 2015, 15:3041.
[43] Cognet L, Tardin C, Boyer D, et al. PNAS, 2003, 100:11350.
[44] David Lasne, Gerhard A Blab, Stéphane Berciaud, et al. Biophysical Journal, 2006, 91:4598.
[45] David Lasne, Gerhard A Blab, Francesca De Giorgi, et al. Optics Express, 2007, 15:14184.
[46] Cécile Leduc, Jin-Mi Jung, Randy R Carney, et al. ACS Nano, 2011, 5:2587.
[47] Zijlstra P,Orrit M. Rep. Prog. Phys., 2011, 74: 106401.
[48] Peter Zijlstra, Pedro M R Paulo,Michel Orrit. Nature Nanotechnology, 2012, 7:379.
[49] Alexander Gaiduk, Paul V Ruijgrok, Mustafa Yorulmaz,et al. Chem. Sci., 2010, 1:343.
[50] Ji Won Ha. Bull. Korean Chem. Soc.,2015, 36:2154.
[51] Parra-Vasquez A N G, Laura Oudjedi, et al. J. Phys. Chem. Lett., 2012, 3: 1400.
[52] Tina X Ding, Lei Hou, Harmen Van der Meer, et al. J. Phys. Chem. Lett.,2016, 7:2524.
[53] Vivien Octeau, Laurent Cognet, Lauernce Duchesne, et al. ACS Nano, 2009, 3:345.
[54] Pedro M R Paulo, Alexander Gaiduk, Forian Kulzer, et al. J. Phys. Chem. C, 2009, 113: 11451.
[55] Miriam Wähnert, Romy Radünz,Frank Cichos. Proc. of SPIE, 2009, 7185: 71850V.
[56] Romy Radünz, Daniel Rings, Klaus Kroy, et al. J. Phys. Chem. A, 2009, 113: 1674.
[57] Markus Selmke, Marco Braun, Frank Cichos. ACS Nano, 2012, 6:2714.
[58] Markus Selmke, Romy Schachoff, Marco Braun, et al. RSC Advances, 2013, 3:394.
[59] Nieves D J, Li Y, Ferning D G, et al. R. Soc. Open Sci., 2015, 2: 140454.
[60] Michael Atlan, Michel Gross, Pierre Desbiolles, et al. Optics Letters, 2008, 33: 500.
[61] Absil E, Tessier G, Gross M, et al. Optics Express, 2010, 18: 780.
[62] Bijeesh M M, Shakhi P K, Arunkarthick S, et al. Scientific Reports, 2017, 7: 1643.
[63] Alket Mrtiri, Thomas Jeys, Vladimir Liberman, et al. Appl. Phys. Letts.,2012, 101:044101.
[64] Eun Seong Lee,Jae Yong Lee. Optics Express, 2011, 19: 1378.
[65] Alket Mertiri, Hatice Altug, Mi K Hong, et al. ACS Photonics, 2014, 1: 696.
[66] Zhang Delong, Li Chen, Zhang Chi, et al. Science Advances, 2016, 2:e1600521.
[67] Bai Yeran, Zhang Delong, Li Chen, et al. J. Phys. Chem. B,2017, 121:10249.
[68] Li Zhongming, Kyle Aleshire, Masaru Kuno, et al. J. Phys. Chem. B, 2017, 121: 8838.
[69] Rusha Chatterjee, Ilia M Pavlovetc, Kyle Aleshire, et al. The Journal of Physical Chemistry, C, 2018, 122:16443.
[70] Arunkarthick S, Bijeesh M M, Geetha K Varier, et al. Journal of Microscopy, 2014, 256: 111.
[71] Markus Selmke, André Heber, Marco Braun,et al. Applied Physics Letters, 2014, 105: 013511.
[72] Hao Shen, Lawrence J Tauzin, Rashad Baiyasi, et al. Chemical Reviews, 2017, 117: 7331. |
|
|
|