|
|
|
|
|
|
The Characterization on Organic Sulfur Occurrence in Coking Coal and Mechanism of Microwave Actionon Thiophene |
GE Tao1,3, CAI Chuan-chuan1, CHEN Ping3, MIN Fan-fei1, ZHANG Ming-xu1 |
1. Institute of Material Science &Engineering, Anhui University of Science and Technology, Huainan 232001, China
2. Institute of Earth & Environment, Anhui University of Science and Technology, Huainan 232001, China
3. Department of Civil and Environmental Engineering, University of Houston, Houston Texas 77204, USA |
|
|
Abstract To understand the endowment characteristics of the organic sulfur in coking coal and know about the chemical mechanism of microwave to organic sulfur in coal are of great importance to the enrichment of the coal desulfurization theory, optimization of the microwave desulfurization process of coal and development of new technology of fine coal processing. XPS and XANES were used to represent the main structure types of organic sulfur and the relative content of organic sulfur in coking coal. Based on the difference of coal density characteristics, we explored the types and content changes of organic sulfur. The benzothiophene and 3-thiophenecarboxylic acid were selected for microwave irradiation experiments at 915 and 2 450 MHz. The variation characteristics of sulfur structures in the model compounds were studied by Raman spectroscopy. The quantum chemistry simulation was performed using Materials Studio to calculate different directions. Materials Studio was used to simulate the configuration parameters of model compounds under energy fields in different directions. We compared the conformation changes of the model compounds after microwave radiating, and analyzed the response mechanism of the sulfur chemical bonds in the coal to the microwave. The XPS and XANES characterization results showed that sulfur in coking coal is dominated by organic sulfur, and thiophene is the most important form of organic sulfur. With the increase of the densities of coking, thiophenic content decreases relatively, a thiol (ether), and (sub) sulfone gradually increase, and the content of three types of organic sulfur tends to be average. After applying the applied energy fields in different directions, the chemical bonds length and bond level of sulfur in benzothiophene and 3-thiophenecarboxylic acid were not obvious, indicating that the microwave energy fields have limited stretching and torsion of chemical bonds. However, there had influence on the bonds angle and dipole moment in the molecular structures of the model compounds by different energy fields application directions. Raman spectrum showed that the vibration peaks of sulfur chemical bonds in the model compounds were red-shifted after microwave irradiation at 915 and 2 450 MHz. Therefore, microwave radiation affected the local structures of the model compounds microenvironment, and changed their molecular configuration and molecular polarity. At the same time, the vibration recovery force of the crystal lattice was reduced, the interaction force between atoms was weakened, and the fracture of sulfur chemical bonds and the dissociation of sulfur were promoted. It was found that the 915 MHz microwave radiation had more obvious effects than 2 450 MHz.
|
Received: 2019-03-23
Accepted: 2019-08-19
|
|
|
[1] Mesroghli S, Yperman J, Jorjani E, et al. Fuel, 2015, 154: 59.
[2] Xu N, Tao X X. International Journal of Mining Science and Technology, 2015, 25(3): 435.
[3] Yang Z Q, Lu X Y, Tan W W, et al. Applied Surface Science, 2018, 439: 1119.
[4] Kayed K. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 199: 242.
[5] Chen X M, Chang Z Y, Peng Y J. Fuel Processing Technology, 2017, 159: 313.
[6] Zhang L J, Li Z H, He W J. Fuel, 2018, 222: 350.
[7] Cato E, Rossi A, Nadim C, et al. Journalof Cultural Heritage, 2018, 29: 30.
[8] Wijaya N, Zhang L. Fuel, 2012, 99: 217.
[9] Wang M J, Liu L J, Wang J C, et al. Fuel Processing Technology, 2015, 131: 262.
[10] GE Tao, MIN Fan-fei, ZHANG Ming-xu. Spectroscopy and Spectral Analysis, 2018, 38(11): 3495.
[11] YUAN Hui, XU Guang-tong, Qiherima, et al. Spectroscopy and Spectral Analysis, 2014, 34(2): 435.
[12] Maubec N, Lahfid A, Lerouge C, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 96: 925.
[13] Ai Y J, Liang P, Wu Y X, et al. Food Chemistry, 2018, 241: 427.
[14] Tehseen Y, Sun D W, Cheng J H. Trends in Food Science & Technology, 2017, 62: 177.
[15] Dégardin K, Desponds A, Roggo Y. Forensic Science International, 2017, 278: 313.
[16] Qi X, Ma W G, Zhang X, et al. Applied Surface Science, 2018, 457: 41.
[17] Predeanu G, Georgeta L, Alexandru T, et al. International Journal of Coal Geology, 2016, 168: 131.
[18] Pusz S, Krzton A, Komraus J. International Journal of Coal Geology, 1997, 33(4): 369.
[19] Li X M, Zhang J P. Acta Physica Sinica, 2010, 59(11): 7736.
[20] Thirunarayanan S, Arjunan V, Marchewka M K. Journal of Molecular Structure, 2017, 1134: 6. |
[1] |
LIU Hong-wei1, FU Liang2*, CHEN Lin3. Analysis of Heavy Metal Elements in Palm Oil Using MP-AES Based on Extraction Induced by Emulsion Breaking[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3111-3116. |
[2] |
CHEN Hao1, 2, WANG Hao3*, HAN Wei3, GU Song-yan4, ZHANG Peng4, KANG Zhi-ming1. Impact Analysis of Microwave Real Spectral Response on Rapid Radiance Simulation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3260-3265. |
[3] |
ZHU Yu-xuan1, YANG Xiao-yu1, XU Xin-rong1, SUN Ming1*, JIAO Chao1*, CHEN Qian1*, ZHAO Zhen-lu2, CHEN Wei-qiang2, ZHANG Xin2, LIU Hong-xin2. Rotational Spectroscopic Investigation on 9-Fluorenone at C-Band (4~8 GHz)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1988-1992. |
[4] |
FAN Chun-hui1, 2, ZHENG Jin-huan3, LIU Hong-xin1. FTIR, 2D-IR and XPS Analyses on the Mechanism of Protoplast Derived From Calendula Officinalis in Response to Lead and Cadmium in Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1420-1425. |
[5] |
SHI Pei1, JIN Zhi-wei1, WANG Fen1*, LUO Hong-jie1, 2, ZHU Jian-feng1, YE Guo-zhen3, ZHANG Yu-feng4. Influence Mechanism of the Iron-Rich Raw Material on the Iron-Based Crystalline Glazes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1628-1633. |
[6] |
LI Ai-yang1, FU Liang2*. Study on the Analysis Total As in Bentonite With Microwave Plasma Atomic Emission Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3671-3675. |
[7] |
HE Xiong-fei1, 2, HUANG Wei3, TANG Gang3, ZHANG Hao3*. Mechanism Investigation of Cement-Based Permeable Crystalline Waterproof Material Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3909-3914. |
[8] |
LIU Hong-wei1,3, FU Liang2*. Analysis of Metal Impurity Elements in Li4Ti5O12 Through Microwave Plasma Atomic Emission Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3021-3025. |
[9] |
WU Jing-xuan, LI Jie*, LIN Jia-wei, YI Shi-wen, LI Min, SU Wen-rou. Influence Mechanism of Microwave on Barite Flotation Based on Infrared Fitting Spectrum Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3083-3091. |
[10] |
LI Huan-tong1, 2, CAO Dai-yong3*, ZHANG Wei-guo1, 2, WANG Lu4. XRD and Raman Spectroscopy Characterization of Graphitization Trajectories of High-Rank Coal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2491-2498. |
[11] |
YU Chun-mei, ZHANG Nan, TENG Hai-peng. Investigation of Different Structures of Coals Through FTIR and Raman Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2050-2056. |
[12] |
LI Ling1,2, HE Xin-yu1,2, LI Shi-fang1,2, GE Chuang3*, XU Yi1,2,4*. Research Progress in Identification and Detection of Fungi Based on SERS Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1661-1668. |
[13] |
CHEN Hao1,2, WANG Hao3*, HAN Wei3, GU Song-yan4, ZHANG Peng4, KANG Zhi-ming1. Impacts Analysis of Typical Spectral Absorption Models on Geostationary Millimeter Wave Atmospheric Radiation Simulation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1858-1862. |
[14] |
LI Ping1,2, WU Yi-qiang1, LÜ Jian-xiong3, YUAN Guang-ming1, ZUO Ying-feng1*. Effect of Biomimetic Respiration Method on the Impregnation Effect of Silicate Modified Chinese Fir by XPS and FTIR Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1430-1435. |
[15] |
GE Tao1, 2, LI Yang1, Wang Meng2, CHEN Ping3, MIN Fan-fei1, ZHANG Ming-xu1. Spectroscopic Characterization of Carbon Structure in High Sulfur Fat Coal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(01): 45-51. |
|
|
|
|