|
|
|
|
|
|
| Preparation and Photothermal Performance Study of Room Temperature Liquid Metal Core-Shell Nanomedicines |
| REN Xing-yu1, CHEN Huai1, GAO Si-bo2, WANG Guang-hua2, DUAN Liang-fei1*, YANG Hui-qin1* |
1. Yunnan Key Laboratory of Biochemical Separation Analysis and Substance Transformation, Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
2. Yunnan Olightek Opto-electronic Technology Co., Ltd., Kunming Institute of Physics, Kunming 650223, China
|
|
|
|
|
Abstract Photothermal therapy (PTT) has garnered significant interest as a promising alternative to conventional cancer treatments, owing to its low systemic toxicity, high targeting precision, and minimal invasiveness. Room-temperature liquid metals (LMs)—a class of functional materials exhibiting both metallic conductivity and fluidic processability—have emerged as attractive candidates for PTT applications. Their unique attributes, including fluidity, dispersibility, high thermal conductivity, efficient photothermal response, and biocompatibility, underscore their potential in this field. However, the practical application of LMs is hampered by their high surface tension and reflectivity, which limit photothermal conversion efficiency. Notably, the highly dynamic and dispersible nature of LM surface atoms offers a pathway for modulation via surface chemical modification. In this study, we employ sodium alginate (SA), a nontoxic and biocompatible natural polymer, to functionally tailor the surface of LMs. Through ultrasonication, a uniform SA coating was formed on LM nanoparticles, yielding well-dispersed core-shell nanostructures, termedLiquid metal@sodium alginate (LM@SA). The SA-modified nanoparticles exhibited remarkable photothermal performance: under 808 nm near-infrared laser irradiation at 1.5 W·cm-2, the heating rate reached 5.4 ℃·min-1, with a temperature plateau of 63 ℃ attained within 4 minutes. The photothermal conversion efficiency was calculated to be 41.9%. Furthermore, the SA coating significantly enhanced colloidal and thermal stability, as evidenced by consistent heating performance over eight consecutive laser on-off cycles without noticeable decay. In summary, this work demonstrates a biocompatible polymer-based strategy for effectively regulating the surface optical properties of LMs. The resulting LM@SA nanomedicine exhibits efficient, stable photothermal behavior, offering a promising platform for precise, effective tumor photothermal therapy.
|
|
Received: 2025-05-16
Accepted: 2025-10-15
|
|
|
|
Corresponding Authors:
DUAN Liang-fei, YANG Hui-qin
E-mail: yanghuiqin@ynnu.edu.cn;liangfeiduan@ynnu.edu.cn
|
|
[1] Cao W, Chen H D, Yu Y W, et al. Chinese Medical Journal, 2021, 134(7): 783.
[2] Fu M M, Shen Y F, Zhou H, et al. Journal of Materials Science & Technology, 2023, 142: 22.
[3] Shang T Y, Yu X Y, Han S S, et al. Biomaterials Science, 2020, 8(19): 5241.
[4] Xiong R H, Hua D W, van Hoeck J V, et al. Nature Nanotechnology, 2021, 16(11): 1281.
[5] Li Y, Wang J, Li Y, et al. Regenerative Biomaterials, 2024, 11: rbae126.
[6] Fan L L, Duan M H, Sun X Y, et al. ACS Applied Bio Materials, 2020, 3(6): 3553.
[7] Wagner S, Bauer S. MRS Bulletin, 2012, 37(3): 207.
[8] Pavithra K G, SundarRajan P, Kumar P S, et al. Chemosphere, 2023, 312: 137314.
[9] Wang C Y, Wang T L, Zeng M Q, et al. The Journal of Physical Chemistry Letters, 2023, 14(44): 10054.
[10] Wu S, Zhang X, Wang R Z, et al. Energy Storage Materials, 2023, 57: 205.
[11] Lu G X, Ni E L, Jiang Y Y, et al. Small, 2024, 20(9): 2304147.
[12] Guo J T, Duan L F, Yang W, et al. Nano Energy, 2024, 131: 110305.
[13] Yan J J, Lu Y, Chen G J, et al. Chemical Society Reviews, 2018, 47(8): 2518.
[14] Hu J J, Liu M D, Chen Y, et al. Biomaterials, 2019, 207: 76.
[15] Liu R X, Gong L J, Zhu X Y, et al. Advanced Healthcare Materials, 2022, 11(11): 2102584.
[16] Wang J L, Zhao X, Yin S H, et al. ACS Sustainable Chemistry & Engineering, 2024, 13(1): 415.
[17] Yang N, Gong F, Ge J, et al. Materials Today Nano, 2023, 21: 100285.
[18] Zhao Z B, Soni S, Lee T, et al. Advanced Materials, 2023, 35(1): 2203391.
[19] Zhang Y X, Wang C Y, Yin M Y, et al. Angewandte Chemie, 2024, 136(1): e202311678.
[20] Zhang Y Y, Guo Z Z, Zhu H R, et al. Journal of the American Chemical Society, 2022, 144(15): 6779.
[21] Lu H D, Tang S Y, Zhu J Y, et al. Advanced Functional Materials, 2024, 34(6): 2311300.
[22] Ehrman R N, Tran N, Trashi I, et al. Molecular Pharmaceutics, 2025, 22(4): 1881.
[23] Luo H H, Zhang L Y, Yang H Q, et al. Advanced Functional Materials, 2025, 35(2): 2413156.
[24] Hu Y J, Zhuo H, Zhang Y, et al. Advanced Functional Materials, 2021, 31(51): 2106761.
[25] Zhu P, Gao S S, Lin H, et al. Nano Letters, 2019, 19(3): 2128.
[26] Li L, Wang K Z, Wang K J, et al. Chemistry—A European Journal, 2023, 29(64): e202301774.
[27] Wang S, Lv Y G. Biomaterials Advances, 2024, 161: 213872.
[28] Hou L, Wu P Y. Carbohydrate Polymers, 2019, 205: 420.
[29] Larosa C, Salerno M, de Lima J S, et al. International Journal of Biological Macromolecules, 2018, 115: 900.
[30] El Foulani A A, Ounas O, Tahiri M, et al. Journal of Polymers and the Environment, 2023, 31(11): 4909.
[31] Zhang T J, Zhang W L, Wang B X, et al. Journal of Intelligent Material Systems and Structures, 2018, 29(2): 232.
[32] Pearce B L, Berg N G, Ivanisevic A. Materials Research Letters, 2017, 5(2): 124.
[33] Detweiler Z M, Wulfsberg S M, Frith M G, et al. Surface Science, 2016, 648: 188.
[34] Wei W, Ai L B, Li M H, et al. Chemistry—An Asian Journal, 2024, 19(6): e202301038.
[35] Wang D W, Rao W. Applied Materials Today, 2022, 29: 101583.
[36] Hu J J, Liu M D, Gao F, et al. Biomaterials, 2019, 217: 119303.
[37] Wang H Y, Chang J J, Shi M W, et al. Angewandte Chemie, 2019, 131(4): 1069.
[38] Yu Z H, He Y L, Feng W W, et al. Materials Today Communications, 2021, 28: 102519.
[39] Hessel C M, Pattani V P, Rasch M, et al. Nano Letters, 2011, 11(6): 2560.
[40] Tian Q W, Jiang F R, Zou R J, et al. ACS Nano, 2011, 5(12): 9761.
[41] Qi Y Q, Jin T, Yuan K, et al. Journal of Materials Science & Technology, 2022, 127: 144.
[42] Zhang Y Y, Zhu H R, An S, et al. Nature Communications, 2024, 15(1): 5395.
|
| [1] |
ZHANG Xuan, WANG Ya-sen, WEN Na, LÜ Hai-xia, LI Bao-ming*. Construction of a Rare Earth Up-Conversion Nanoparticle Sensor and Its Application in the Detection of Food Additives[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(09): 2459-2466. |
| [2] |
ZHANG Xiao-kai1, JIANG Rui-feng2, FU Xiao-xue2, LIU Zhong-min3*. Preparation, Characterization and Catalytic Properties of
ZnO/ZnSe Composites[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 1005-1010. |
| [3] |
YU Xian-kun1, 2, 4, XU Wei-cheng1, ZHANG Hao1, 2, 3*, WU Yu-xi1, LI Hai-li3, LONG Hong-ming1, 2, CHENG Zheng-ming5, LIU Zi-min6, RONG Bei-guo7, ZHANG Gui-wen8. Properties and Mechanism of Shield Powder/Rubber Compatibilizer
Composites Based on Spectroscopic Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 1177-1182. |
| [4] |
XUE Chang-guo1, TANG Yu1, LI Shi-qin1, LIU Song1, LI Ben-xia2. Hydrothermal Green Synthesis of Nano Silver and Its Application in Surface Enhanced Raman of Organic Dyes in Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3722-3726. |
| [5] |
ZHANG Cong-cong1, LIU Lian-dong2, XIA Lei1, LI Xue3, ZHANG Xiao-kai1*. Preparation of ZnSe/ZnS Core-Shell Quantum Dots Under UV Irradiation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3409-3415. |
| [6] |
SHI Ang-ang1, YU Hong-xia2, GU Min-fen1*, YANG Zhong-lin3, YANG Xue1. FTIR Spectroscopy of Core@Shell Structured Nickel-Hydrazine Nanocomposites[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(10): 3136-3140. |
| [7] |
YAO Cui-ping, WANG Jia-zhuang, WANG Jing, ZHANG Lu-wei, WANG Si-jia, ZHANG Zhen-xi*. Preparation of Au@TiO2-HMME and Its Photodynamic Efficiency[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3670-3676. |
| [8] |
Lü Hong-feng1, YAN Wei-ping2*, LIU Zhi-huan2, LI Jie-chao2 . Hydrophilic Surface Modification of Polydimethylsiloxane with UV/Ozone Treatment [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(04): 1033-1037. |
| [9] |
LI Zhen-ya, HUANG Shi-ming*, GU Mu, LIU Xiao-lin. Preparation and Photoluminescent Properties of Ce3+-Activated LaPO4 Nanocrystals and Core/Shell Structure[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(11): 3036-3040. |
| [10] |
FENG Shi-qi1, SONG Wei1, WANG Yan2, MIAO Xin-hui1, XU Li-jun1, LIU Yu1, LI Cheng1, LI Wen-long1, WANG Yi-ran1, CAI Hong-xing1*. Scattering Properties of Core-Shell Structure of Mist Wrapped Dust Particles[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(12): 3218-3223. |
| [11] |
ZHANG Nian-bo1, TIAN Jin-xiu1, LI Wei1, WU Li-li1, LI Bing1, ZHANG Jing-quan1*, FENG Liang-huan1,XU Ming2,3 . Silicon Nanocrystals Doping and Surface Modification [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(02): 331-334. |
| [12] |
GUO Qiang, LI Chun, JIA Zhi-jun, YUAN Guang* . Effect of Silver/Zinc Selenide Core-Shell Structure Spheres on the Infrared Absorption Properties of Sodium Nitrate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(10): 2625-2628. |
| [13] |
PENG Xiao-li1, XU Fang1*, BIAN Jing1, ZHANG Wen-zhong1, WU Yi2 . Fe(Ⅲ) Modified Sodium Alginate Beads Based Micro-Extraction in Combination with Hydride Generation-Atomic Fluorescence Spectrometry (HG-AFS) for Speciation Analysis of Inorganic As(Ⅲ) and As(Ⅴ) in Water Samples[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(06): 1689-1692. |
| [14] |
TAN En-zhong1, 2, YIN Peng-gang2*, HUANG Wei-feng2, YU Ge1, YU Chun-na1 . Preparation of Au@SiO2 Core-Shell Nanoparticles: Controlling the Optical Properties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(12): 3267-3270. |
| [15] |
YAN Zhi-yun1, HU Xiao-yun1*, YE Yan-xi1, ZHANG De-kai1, MIAO Hui1, FAN Jun2, JIANG Zhen-yi3. Preparation and Luminescent Performance of Tb3+ Doped SiO2 Core-Shell Nanoparticles[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2011, 31(12): 3190-3193. |
|
|
|
|