In-Situ Raman Spectroscopy Testing and Genesis of Graphite Inclusions in Alluvial Diamonds from Hunan
MA Ying1, WANG Qi2, QIU Zhi-li1*, LU Tai-jin3, LI Liu-fen1, CHEN Hua3, DENG Xiao-qin1, BO Hao-nan1
1. Department of Earth Scicence, Sun Yat-sen University, Guangdong Key Laboratory of Geodynamic and Geological Hazards, Guangdong Key Laboratory of Geological Process and Mineral Resources Exploration, Guangzhou 510275, China
2. The Jewellery Inspection Laboratory of Guangzhou CIQ, Guangzhou 510275, China
3. National Gems & Jewelry Technology Administrative Center, Beijing 100013, China
Abstract:Graphite is one of the most common inclusion in diamond, it can be divided into protogenetic, syngenetic and epigenetic on the basis of sequence of graphite inclusion formation. The formation environment of the diamond and its late change are indicated by protogenetic/syngenetic and epigenetic graphite. In-situ microscopic laser Raman spectroscopy, we carried out on graphite inclusions in 13 gem-grade and semiprecious alluvial diamonds from the the Yuanjiang Basin in Hunan province(Yangtze Craton). The results showed that the graphite inclusions whether protogenetic/syngenetic or epigenetic Raman shift in position of the G band and D band toward high frequency region and Show low ordered structures and defects. Raman shift of the protogentic/syngenetic graphite G band range from 1 591 to 1 600 cm-1, the shift of the G band of epigenetic graphite is wide rang from 1 575 to 1 588 cm-1, it is thought that forming pressure for diamond in Yuanjiang Basin(Yangtze Craton)is lower and its crystallization pressure have great varying range. We calculated the pressure are rang from 4.01 to 5.88 GPa according to Raman shift of the protogentic/syngenetic graphite G band range. It is consistent with what result of calculation in Raman shift of the olivine in Hunan diamonds, the D band rang from 1 350~1 368 cm-1 andthe G band and D band intensity ofprotogenetic/syngeneticgraphite inclusions of Hunan diamonds between 0.36 to 0.82, it indicatethat those area diamondswereformed depth is shallow and may be formed in a lithospheric mantle containing abundant eclogite. In these cases, the diamonds may have formed diamond-graphite boundary and diamond stability field. The graphite inclusion Raman shift of diamond is one of effective approach to explore the formation environment of the diamond primary area.
马 瑛,王 琦,丘志力,陆太进,李榴芬,陈 华,邓小芹,薄昊楠. 湖南砂矿金刚石中石墨包裹体拉曼光谱原位测定:形成条件及成因指示[J]. 光谱学与光谱分析, 2018, 38(06): 1753-1757.
MA Ying, WANG Qi, QIU Zhi-li, LU Tai-jin, LI Liu-fen, CHEN Hua, DENG Xiao-qin, BO Hao-nan. In-Situ Raman Spectroscopy Testing and Genesis of Graphite Inclusions in Alluvial Diamonds from Hunan. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1753-1757.
[1] Zedgenizov D A, Kagi H, Shatsky V S, et al. Mineralogical Magazine, 2004, 68(1): 61.
[2] Harris J W. Contributions to Mineralogy and Petrology, 1972, 35(1): 22.
[3] Khokhryakov A F, Nechaev D V. Russian Geology and Geophysics, 2015, 56(1-2): 232.
[4] Tuinstra F, Koenig J L. Journal of Chemical Physics, 1970, 53(3): 1126.
[5] XUE Jin-tao, LI Chun-yan, WU Chun-jie, et al(薛金涛, 李春燕, 吴纯洁, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2017, 37(1): 120.
[6] Zerda T W, Xu W, Zerda A, et al. Carbon, 2000, 38(3): 355.
[7] Nechaev D V, Khokhryakov A F. Russian Geology and Geophysics, 2013, 54(4): 399.
[8] ZHAO Yong-nian, ZHANG Zhi-lin, CUI Qi-liang, et al(赵永年, 张志林, 崔启良, 等). Acta Scientiarum Naturalium Universitatis Jilinensis(吉林大学学报理学版), 1992, 4(4): 51.
[9] Nechaev D V, Khokhryakov A F. Geology of Ore Deposits, 2014, 56(2): 139.
[10] Sánchez G, Servat J, Gorostiza P, et al. Diamond & Related Materials, 1996, 5(6): 592.
[11] QIU Zhi-li, WANG Qi, QIN She-cai, et al(丘志力, 王 琦, 秦社彩, 等). Geotectonica et Metallogenia(大地构造与成矿学), 2014, 38(3): 590.
[12] Pal’Yanov Y N, Sokol A G, Sobolev N V. Geologiya I Geofizika, 2005, 46(12): 1290.
[13] Bródka A, Zerda T W, et al. Diamond & Related Materials, 2006, 15(11): 1818.
[14] GUO Jiu-gao, CHEN Feng, DENG Hua-xing, et al(郭九皋, 陈 丰, 邓华兴, 等). Science Bulletin(科学通报), 1989, 34(2): 130.
[15] YANG Ming-xing, PAN Zhao-lu(杨明星, 潘兆橹). Earth Science-Journal of China University of Geosciences(地球科学-中国地质大学学报), 2004, 29(1): 45.
[16] SUN Yuan, CHEN Hua, QIU Zhi-Li, et al(孙 媛, 陈 华, 丘志力, 等). Atca Petrologica et Mineralogica(岩石矿物学杂志), 2012, 31(2): 261.
[17] Schmetzer K. Gems & Gemology, 1999, 35(4): 186.