Measurement of Sr/Ca Ratio in Tridacna spp. Shells from South China Sea: A Comparison of SR-XRF and ICP-OES Analysis Methods
MEI Yan-jun1, SHAO Da1, WANG Yu-hong1, YANG Zhong-kang1, YANG Wen-qing1, GAO Yue-song1, HE Shang-ming2, ZHENG Yi2, LI Ai-guo2, SUN Li-guang1*
1. Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Science, University of Science and Technology of China, Hefei 230026, China
2. Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
Abstract:Two different analysis methods were applied and compared for determining high-resolution Sr/Ca ratio profiles of one modern (live-caught) and four fossil (dead-collected) Tridacna spp. samples from South China Sea. The Sr/Ca profile of Tridacna gigas in the South China Sea determined by Inductively coupled plasma optical emission spectrometry (ICP-OES) had well defined annual cycles and was significantly, negatively correlated with sea surface temperature, implying that they can be used as good proxies of historical Sea Surface Temperature (SST). ICP-OES is an commonly used method for measuring Sr/Ca ratios in Tridacna spp. shells, but it needs ex-situ, time-consuming chemical pretreatments using variable acids and considerable amounts of sample. While the synchrotron radiation X-ray fluorescence (SR-XRF) technique does not have these shortcomings, it requires little sample preparation and allows rapid in situ analysis of solid-state samples at high spatial resolution (submicron scales), and it is characterized by non-destructive, high sensitivity, and multi-elemental distribution. In this study, we tested the feasibility of determining chemical elements in shell samples of Tridacna spp. by using SR-XRF. To the best of our knowledge, no similar studies have been reported in the literature.Our study showed that the data of SR-XRF can reflect the elements contents and their ratios change. SR-XRF derived Sr/Ca ratio profiles are significantly correlated with those from ICP-OES (P-values for five Tridacna spp. samples are all <0.05); therefore, SR-XRF can be a promising alternative to ICP-OES. And it has a broad application potential in palaeoclimate reconstructions by using Tridacna spp..
Key words:SR-XRF; ICP-OES; Tridacna spp.; Sr/Ca ratio
基金资助: the Natural Science Foundation of China (NSFC) (41176042) and the National Basic Research Program of China (973 Program, 2013CB955700)
通讯作者:
孙立广
E-mail: slg@ustc.edu.cn
作者简介: MEI Yan-jun,(1991—),female, Ph. D, Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Science, University of Science and Technology of China e-mail: mayyu@mail.ustc.edu.cn
引用本文:
梅衍俊,邵 达,王玉宏,杨仲康,杨文卿,高月嵩,何上明,郑 怡,李爱国,孙立广. 南海砗磲Sr/Ca比值测试:XRF和ICP-OES方法对比研究[J]. 光谱学与光谱分析, 2018, 38(05): 1640-1647.
MEI Yan-jun, SHAO Da, WANG Yu-hong, YANG Zhong-kang, YANG Wen-qing, GAO Yue-song, HE Shang-ming, ZHENG Yi, LI Ai-guo, SUN Li-guang. Measurement of Sr/Ca Ratio in Tridacna spp. Shells from South China Sea: A Comparison of SR-XRF and ICP-OES Analysis Methods. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1640-1647.
[1] Sano Y, Kobayashi S, Shirai K, et al. Nature Communications, 2012,3: 761.
[2] Yan H, Shao D, Wang Y, et al. Geochimica et Cosmochimica Acta, 2013,112: 52.
[3] Aubert A, Lazareth C E, Cabioch G, et al. Coral Reefs, 2009,28(4): 989.
[4] Elliot M, Welsh K, Chilcott C, et al. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009,280(1): 132.
[5] Maier E,Titschack J. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 291(3): 228.
[6] Beck J W, Edwards R L, Ito E, et al. Science, 1992,257(5070): 644.
[7] Mitsuguchi T, Matsumoto E, Abe O, et al. Science, 1996,274(5289): 961.
[8] Yan H, Shao D, Wang Y H, et al. Journal of Earth Environment, 2011: 381.
[9] Yan H, Wang Y, Sun L. Acta Oceanologica Sinica, 2014, 33(8): 18.
[10] Hori M, Sano Y, Ishida A, et al. Scientific Reports, 2015,5: 8734.
[11] Yan H, Shao D, Wang Y, et al. Chemical Geology, 2014,390: 22.
[12] Kurunczi S, Trk S, Chevallier P. Microchimica Acta, 2001, 137(1-2): 41.
[13] Frisia S, Borsato A, Fairchild I J, et al. Earth and Planetary Science Letters, 2005, 235(3): 729.
[14] Hendy E, Lanzirotti A, Rasbury T, et al. Geochimica et Cosmochimica Acta, 2006,70(18): A246.
[15] Yoshimura T, Tamenori Y, Suzuki A, et al. Chemical Geology, 2013,352: 170.
[16] Yoshimura T, Tamenori Y, Kawahata H, et al. Biogeosciences, 2014,11(14): 3881.
[17] Tamenori Y, Yoshimura T, Luan N T, et al. Journal of Structural Biology, 2014,186(2): 214.
[18] Nguyen L T, Rahman M A, Maki T, et al. Geochimica et Cosmochimica Acta, 2014,127: 1.
[19] Lu S, Cai W, Zhang X, et al. Marine Pollution Bulletin, 2015,101(1): 226.
[20] Watanabe T, Suzuki A, Kawahata H, et al. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004,212(3): 343.
[21] Wei G, Sun M, Li X, et al. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000,162(1): 59.
[22] Yan H, Sun L, Wang Y, et al. Nature Geoscience, 2011,4(9): 611.
[23] Trenberth K E. Monthly Weather Review, 1984,112(2): 326.
[24] Bretherton C S, Widmann M, Dymnikov V P, et al. Journal of Climate, 1999,12(7): 1990.
[25] Box G E, Jenkins G M, Reinsel G C, et al. Time Series Analysis: Forecasting and Control. John Wiley & Sons,2015.
[26] Thorn K, Cerrato R M, Rivers M L. The Biological Bulletin, 1995,188(1): 57.
[27] Nishida K, Ishimura T, Suzuki A, et al. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012,363-364: 99.