1. 防灾科技学院,河北 燕郊 065201
2. 中国地震局地震预测重点实验室(中国地震局地震预测研究所),北京 100036
3. Department of Mechanical Engineering, Texas Tech University, Lubbock. Texas 79409, USA
4. 高压科学技术研究中心,吉林 长春 130112
5. 吉林大学超硬材料国家重点实验室, 吉林 长春 130012
XRD Investigation of a Natural Oligoclase at Pressure Up to 27 GPa
DU Jian-guo1, 2, MA Yan-zhang3,5, ZHU Hong-yang3,4, XIE Chao2, HOU Dong-bin3, LI Ying2,SUN Feng-xia2
1. Institute of Disaster Prevention, Yanjiao 065201, China
2. CEA Key Lab of Earthquakr Prediction (Institute of Earthquake Science), China Earthquake Administration, Beijing 100036, China
3. Department of Mechanical Engineering, Texas Tech University, Lubbock. Texas 79409, USA
4. Center for High Pressure Science & Technology Advanced Research, Changchun 130112, China
5. State Key Laboratory for Superhard Materials, Jilin University, Changchun 130012, China
Abstract:The volume compressibility of natural oligoclase (Na0.86K0.02Ca0.12Mg0.01(Fe0.01Al1.12Si2.87O8)) was investigated by in situ powder synchrotron X-ray diffraction (XRD) methods at pressure up to 27 GPa, and the equations of state (EoS) of the oligoclase were obtained. The experimental data indicate that the oligoclase specimen underwent triclinic to monoclinic phase transition (P1 to C2) at about 3.5 GPa and a further phase transition from C2 to C2/m in monoclinic symmetry at about 10 GPa with increasing pressure. The bulk modulus of the triclinic phase was calculated to be K0=73.8 GPa, and those of monoclinic phases with C2 symmetry and C2/m symmetry to be K(C2)=124 GPa and K(C2/m)=272 GPa, respectively. The stiffness of the T-O-T angle, the strength of the M-O bond and bending of Si-O-Al angle are as a function of the chemical compositions of feldspars. The substitution of mingled ions for main ions in the crystal structure of the oligoclase modified T-O-T angle and the strength of the M-O bonds, resulting in variation of high pressure behavior of the oligoclase. Unit cell compression of triclinic phase oligoclase is obviously anisotropic. The results indicate that oligoclase may probably contribute to the deep recycle of alkali and alkaline-earth elements in the cool subduction zone.
Key words:Compressibility; Bulk modulus; Natural oligoclase; XRD; High pressure
基金资助: the Natural Science Foundation of China (41373059)
作者简介: DU Jian-guo, (1956—), Professor of Institute of Earthquake Science and Institute of Disaster Prevention e-mail:
jianguodu@hotmail.com
引用本文:
杜建国,马艳章,祝洪洋,谢 超,后东斌,李 营,孙凤霞. 压力高达27 GPa下天然奥长石的XRD分析[J]. 光谱学与光谱分析, 2017, 37(04): 1314-1321.
DU Jian-guo, MA Yan-zhang, ZHU Hong-yang, XIE Chao, HOU Dong-bin, LI Ying,SUN Feng-xia. XRD Investigation of a Natural Oligoclase at Pressure Up to 27 GPa. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(04): 1314-1321.
[1] Peacock S M,Wang K. Science, 1999,286:937.
[2] Ueda K, Gerya T,Sobolev S V. Physics of the Earth and Planetary Interiors, 2008,171:296.
[3] Ohtani E, Andrault D, Asimow P D, et al. Physics of the Earth and Planetary Interiors, 2009, doi:10.1016/j.pepi.2009.03.003.
[4] Birch F, LeComte P. Amercan Journal of Science, 1960,258:209.
[5] Orville P M. American Mineralogist, 1967,52:55.
[6] Phillips M W, Colville A A,Ribbe P H. Zeits. Krist., 1971,133:43.
[7] Deer W A, Howie R A,Zussman J. An Introduction to the Rock-Forming Minerals, Pearson Education Ltd., Edinburgh Gate, Harlow, England, 1992. 696.
[8] Angel R J. Contribution to Mineralogy and Petrology, 2004,146:506.
[9] Pandolfo F, Ballaran T B, Nestola F, et al. American Mineralogist, 2011,96:1182.
[10] Deng L, Liu X, Liu H,et al. Earth and Planetary Science Letter, 2010, 298: 427.
[11] Deng L, Liu X, Liu H,et al. American Mineralogist, 2011,96:974.
[12] Liu W, Kung J,Li B. Geophysics Research Letter, 2005,32:L16301.
[13] Ohtani E,Sakai, T. Physics of the Earth and Planetary Interiors, 2008,170:240.
[14] Mao H K,Bell P M. Year Book Carnegie Institute Washington, 1978,77:904.
[15] Mao H K,Hemley R J. New Windows on the Earth’s Deep Interior, In Hemley R J (Ed). Ultrahigh-Pressure Mineralogy—Physics and Chemistry of the Earth’s Deep Iinterior. Review of Mineralogy, 1998. 1.
[16] Németh P, Tribaudino M, Bruno E,et al. American Mineralogist, 2007,92:1080.
[17] Bai L, Du J, Liu W,et al. Science in China (D), 2003, 46(9): 895.
[18] Liu W, Du J, Bai L, et al. Chinese Physics Letter, 2003, 20(1): 164.
[19] Gao S, Kern H, Liu Y S, et al. Jounal of Geophysics Research, 2000,105:18965.
[20] Ribbe P H. The Crystal Structures of the Aluminum-Silicate Feldspars. In Parsons I (Ed), Feldspars and Their Reactions. Kluwer, Dordrecht, the Netherlands,1994. 1.
[21] Ross N L. Framework Structures. In Hazen R M,Downs R T. (Eds.). High- Temperature and High-Pressure Crystal Chemistry, Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly, Virginia,2000,41:257.
[22] Curetti N, Sochalski-Kolbus L M, Angel R J, et al. American Mineralogist, 2011,96:383.
[23] Loewenstein W. American Mineralogist, 1954,39:92.
[24] Angel R J, Hazen R M, McCormick T C, et al. Physics and Chemistry of Minerals, 1988,15:313.
[25] Hirao N, Ohtani E, Kondo T, et al. Physics of the Earth and Planetary Interiors, 2008,166:97.
[26] Henlow G E. American Mineralogist, 1982,67:975.
[27] Viswanathan K,Kielhorn H M. American Mineralogist, 1983,68:112.
[28] Angel R J. Journal of Applied Crystallography, 2003,36:295.
[29] Downs R, Hazen R M,Finger L W. American Mineralogist, 1994,79:1042.
[30] Doman R C, Cinnamon C G,Bailey S W. American Mineralogist, 1965,50:724.
[31] Vaidya S N, Bailey S, Pasternack T,et al. Journal of Geophysics Research, 1973, 78(29): 6893.
[32] Carpenter M A. Subsolidus Phase Relations of the Plagioclase Feldspar Solid Solution. In Parsons I (Ed). Feldspars and Their Reactions, NATO ASI Series C: Mathematics and Physics Science, Kluwer, Dordrecht, 1994,421:221.
[33] Benusa M D, Angel R J,Ross N L. American Mineralogist, 2005,90:1115.
[34] Daniel I, Gillet P, McMillan P F, et al. Journal of Geophyics Research, Solid Earth, 1997,102:10313.
[35] Redfern S A T. Mineral Magazine, 1996,60:493.
[36] Johnson E M. The Elastic Behavior of Plagioclase Feldspar at High Pressure. Thesis for Master of Science, the Faculty of the Virginia Polytechnic Institute and State University, 2007. 1.
[37] BGMRBM (Bureau of Geology and Mineral Resources of Beijing Municipality). Regional Geology of Beijing Municipality. Geological Publish House, Beijing. in Chinese. 1991.
[38] Xie C, Du J, Cui Y, et al. Spectroscopy and Spectral Analysis, 2011. accepted.
[39] Angel R J, Bujak M,Zhao J,et al. Journal of Applied Crystallography, 2007,40:26.
[40] Mao H K, Xu J, Bell P M. Journal of Geophysics Research, 1986,91:4673.
[41] Kraus W,Nolze G. Journal of Applied Crystallography, 1996,29:301.
[42] Daniel I, Gillet P,Ghose S. American Mineralogist, 1995,80:645.
[43] Nestola F, Ballaran B T, Benna P, et al. American Mineralogist, 2004,89:1474.
[44] Stewart D B,Ribbe P H. American Journal of Science, 1969,267-A:444.
[45] Hovis G L. American Mineralogist, 1977,62:672.
[46] McGuinn M D,Redfern S A T. American Mineralogist, 1994,79:24.
[47] Benna P, Nestola F, Ballaran B T, et al. American Mineralogist, 2007,92:1190.
[48] Phillips M W, Ribber P H,Gibbs G V. American Mineralogist, 1973,58:495.
[49] McMillan P F, Brown W L,Openshaw R E. American Mineralogist, 1980,65:458.
[50] Hovis G L,Peckins E. Contribution to Mineralogy and Petrology, 1978,66:345.
[51] Simpson D R. American Mineralogist, 1977,62:351.
[52] Megaw H D, Kempster C J E,Radoslovich E W. Acta Crystallography, 1962,15:1017.
[53] Birch F. Journal of Geophysical Research, 1978,83:1257.
[54] Angel R J. Feldspars at High Pressure. In Parsons I (Ed). Feldspars and Their Reactions, Netherlands: Kluwer Academic Publishers, 1994. 271.
[55] Yoder H S,Weir C E. American Journal of Science, 1951,249:683.
[56] Angel R J, Shaw C S J,Gibbs G V. Physics and Chemistry of Minerals, 2003,30:167.