光谱学与光谱分析
|
铅烷发生反应的非新生态氢机理
邹 艳,金富霞,陈治江,邱德仁,杨芃原*
复旦大学化学系,上海 200433
Non-Nascent Hydrogen Mechanism of Plumbane Generation
ZOU Yan, JIN Fu-xia, CHEN Zhi-jiang, QIU De-ren, YANG Peng-yuan*
Department of Chemistry, Fudan University, Shanghai 200433, China
摘要 : 文章采用流动注射氢化物发生-石英管电热原子化-原子吸收光谱法检测实验系统,检测铅烷发生反应中反应物的量和产生的铅烷的量之间的关系,以阐明K2 Cr2 O7 体系铅烷发生的机理。实验结果表明,反应体系中酸首先与NaOH发生中和反应,随后过量的酸参与KBH4 和K2 Cr2 O7 的氧化还原反应(消耗的酸与KBH4 摩尔比为一常数9.95±0.42)。铅烷发生反应与氧化还原反应同步发生,且产率随酸量的增加而增加的实验结果表明:铅烷发生反应是由氧化剂和硼氢化钾之间的氧化还原反应所诱导的。至此,证实ⅣA族Ge,Sn,Pb的氢化物发生反应都是非新生态氢机理。
关键词 :铅烷;流动注射;氢化物发生;非新生态氢机理
Abstract :The mechanism of plumbane generation in dichromate system was studied via investigation of the relationship between the plumbane yield and the molar number of the reactants. A flow injection hydride generator was used in the study. Reactant moler number was calculated by the injected volume and the reactant concentration, and the plumbane yield was measured via an AAS spectrometer equipped with an electrothermal quartz tube atomizer. Experimental results show that the acid was first used for the neutralization of NaOH and successively participated in the redox reaction of borohydride with dichromate with a constant molar ratio of 9.95±0.42(expressed in terms of mean±standard deviation). At the same time,plumbane generation was displayed as synchronously taking place with the redox reaction, and the yield increased with the increase of acid. The mechanism of plumbane generation was thus deduced as an induced reaction or a catalytic reaction by the redox reaction. Up to this end, the non-nascent hydrogen mechanism of hydride generation has been verified for all the IVA elements.
Key words :Plumbane;Flow injection;Hydride generation;Non-nascent hydrogen mechanism
收稿日期: 2004-03-26
修订日期: 2004-06-28
通讯作者:
杨芃原
引用本文:
邹 艳,金富霞,陈治江,邱德仁,杨芃原* . 铅烷发生反应的非新生态氢机理[J]. 光谱学与光谱分析, 2005, 25(10): 1720-1723.
ZOU Yan, JIN Fu-xia, CHEN Zhi-jiang, QIU De-ren, YANG Peng-yuan* . Non-Nascent Hydrogen Mechanism of Plumbane Generation. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2005, 25(10): 1720-1723.
链接本文:
https://www.gpxygpfx.com/CN/Y2005/V25/I10/1720
[1] Robbins W B, Caruso J A. Anal. Chem., 1979, 51: 889A. [2] Boumans P W J M(editor). ICP Emission Spectroscopy, Part 1. New York: Wiley, 1987, Ch 6: 336 [3] Nakahara T. Prog. Analyt. Atom. Spectrom., 1983, 6:163. [4] Qiu D R. Trends in Anal. Chem., 1995, 14(2): 76. [5] Montaser A, Golightly D W(editor). ICPs in Analytical Atomic Spectrometry (Revised edition), Wiley, VCH Publishers, 1992, Ch17. [6] Dedina J, Tsalev D L. Hydride Generation Atomic Absorption Spectrometry, Wiley, Chichester, 1995. [7] Nakahara T. Adv. At. Spectrosc., 1995, 2: 139. [8] QIU De-ren(邱德仁编著). Analytical Atomic Spectrometry, Ch 4(原子光谱分析, 第4章). Shanghai: Fudan University Press(上海: 复旦大学出版社), 2002. [9] Qiu D R, Lin B, Ouyang S. Proceedings of International 4<sup>th</sup> BCEIA, 1991, C47; ICP Internation Newslett., 1992, 18: 231. [10] Qiu D R, Vandecasteele C, Vermeiren K, et al. Spectrochim. Acta, B, 1990, 45: 439. [11] QIU De-ren, CHEN Zhi-jiang, LUO Xiao-wen(邱德仁, 陈治江, 罗小雯). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 1994, 14(1): 77. [12] LUO Xiao-wen, QIU De-ren, CHEN Zhi-jiang, et al(罗小雯, 邱德仁, 陈治江, 等). Chinese J. Anal. Chem.(分析化学), 1993, 21(11): 1241. [13] Vijian P N, Wood G R. Analyst, 1976, 101: 966. [14] CHEN Heng-wu, QI Wen-bin(陈恒武, 戚文彬). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 1994, 14(2): 113. [15] Brodie K G. Int. Lab., 1979, (Jul./Aug.): 40. [16] Nerin C, Olavide C. Water Air Soil Pollut., 1989, 44: 339. [17] ZOU Yan, CHEN Zhi-jiang, JIN Fu-xia, et al(邹 艳, 陈治江, 金富霞, 等). Chinese J. Anal. Chem. (分析化学), 1999, 27(6): 653. [18] ZOU Yan, YANG Peng-yuan, CHEN Zhi-jiang, et al.(邹 艳, 杨芃原, 陈治江, 等). Journal of Fudan University(Natural Science)(复旦大学学报·自然科学版), 2001, 40(4): 360.
[1]
郑培超,刘冉宁,王金梅,冯楚辉,何雨桐,吴美妮,何雨欣. 氢化物发生辅助溶液阴极辉光放电光谱技术检测水体中痕量汞和锡 [J]. 光谱学与光谱分析, 2022, 42(04): 1139-1143.
[2]
. 微波等离子体原子发射光谱分析膨润土中总砷的研究 [J]. 光谱学与光谱分析, 2021, 41(12): 3671-3675.
[3]
. 基于滤光片提取光谱的流动注射-溶液阴极辉光放电检测研究 [J]. 光谱学与光谱分析, 2021, 41(03): 842-847.
[4]
. 土壤和水系沉积物中硒的价态分析方法研究 [J]. 光谱学与光谱分析, 2021, 41(03): 871-874.
[5]
. 氢化物发生-液体阴极辉光放电发射光谱对海水中硒、砷、汞的高灵敏定量检测 [J]. 光谱学与光谱分析, 2019, 39(05): 1359-1365.
[6]
. 氢化物发生-原子荧光光谱法测定三种鸡蛋中硒含量的研究 [J]. 光谱学与光谱分析, 2019, 39(02): 607-611.
[7]
. FI-KR-FAAS空气混合吸附二次气体分隔洗脱法测定海洋生物样中的痕量铅 [J]. 光谱学与光谱分析, 2018, 38(11): 3578-3582.
[8]
安学静;罗云敬*;张辰暘. 流动注射法探究模拟酶催化过氧亚硝酸根氧化酪氨酸的动力学特征 [J]. 光谱学与光谱分析, 2016, 36(12): 4052-4057.
[9]
张 硕;. 氢化物发生原子荧光光谱分析中的微秒脉冲供电空心阴极灯激发光源 [J]. 光谱学与光谱分析, 2015, 35(09): 2412-2419.
[10]
周婧容;邓冬艳;黄 科;田云飞*;侯贤灯;* . 硅胶负载的纳米TiO2 在线富集氢化物发生-原子荧光光谱法同时测定矿石中的硒和碲 [J]. 光谱学与光谱分析, 2015, 35(09): 2401-2406.
[11]
梁爱惠;李 院;黄珊珊;罗杨合;温桂清;蒋治良* . 氢化物-KI3 -罗丹明6G体系荧光法测定痕量硒 [J]. 光谱学与光谱分析, 2015, 35(05): 1306-1308.
[12]
郑植元;;;杜玉枝;;张 明;;;于明杰;;;李 岑;;;杨红霞;;赵 静;;;夏政华;;;魏立新;* . 四种藏药成方制剂中铅、砷含量的湿法消化-流动注射氢化物发生-原子吸收光谱法测定研究 [J]. 光谱学与光谱分析, 2015, 35(04): 1037-1042.
[13]
钱 薇;蒋 倩;王如海;龚 华;韩 勇 . 程序控温石墨消解-氢化物原子荧光光谱法测定植物中痕量硒 [J]. 光谱学与光谱分析, 2014, 34(01): 235-240.
[14]
曹俊涛;王 辉;陈永红;刘彦明* . 流动注射化学发光法灵敏测定人血液和血清中血红蛋白 [J]. 光谱学与光谱分析, 2014, 34(01): 241-245.
[15]
崔 健;;赵学玒*;汪 曣;肖亚兵;蒋学慧;代 丽 . 流动注射-氢化物发生-原子荧光光谱仪数学模型优化研究 [J]. 光谱学与光谱分析, 2014, 34(01): 246-251.