Automatic Method for Selecting Characteristic Lines Based on Genetic Algorithm to Quantify Laser-Induced Breakdown Spectroscopy
KONG Hai-yang1, 2, 3, SUN Lan-xiang1, 3*, HU Jing-tao1, 3, ZHANG Peng1, 2, 3
1. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China 2. University of Chinese Academy of Sciences, Beijing 100049, China 3. Key Laboratory of Networked Control System, Chinese Academy of Sciences, Shenyang 110016, China
Abstract:Selecting proper characteristic lines from enormous spectral intensities is crucially important to implement quantitative analysis of Laser-Induced Breakdown Spectroscopy using internal standard method. Manual selecting of characteristic lines by researchers is time consuming and energy consuming, which cannot guarantee the best result. An automatic method to select analytical and reference lines for internal standard method from the original spectra based on Genetic Algorithm was proposed in this paper. This method was utilized to select analytical and reference lines for internal standard methods from LIBS of Mn, Ni, Cr, Si and Fe of low alloy steels. The optimal characteristic lines optimized by this method were the analytical line 403.306 8 nm of Mn and the corresponding reference line 368.745 7 nm of Fe, the analytical line 288.157 7 nm of Si and the corresponding reference line 427.176 1 nm of Fe, the analytical line 286.510 0 nm of Cr and the corresponding reference line 272.753 9 nm of Fe and the analytical line 352.453 6 nm of Ni and the corresponding reference line 358.698 5 nm of Fe, respectively. Then these elements were quantified by the internal standard method using these selected lines. The results showed that this proposed method for selecting characteristic lines can automatically select the optimal analytical and reference lines and could guarantee the best quantitative result obtained by internal standard method.
Key words:LIBS;Genetic algorithm;Wavelength selection;Quantitative analysis;Internal standard method;Alloy steels
[1] Lasheras R J, Bello-Galvez C, Rodriguez-Celis E M, et al. Journal of Hazardous Materials, 2011, 192(2): 704. [2] Multari R A, Cremers D A, Scott T, et al. Journal of Agricultural and Food Chemistry, 2013, 61(10): 2348. [3] Sirven J B, Bousquet B, Canioni L, et al. Analytical and Bioanalytical Chemistry, 2006, 385(2): 256. [4] Vitkova G, Novotny K, Prokes L, et al. Spectrochimica Acta Part B-Atomic Spectroscopy, 2012, 73: 1. [5] Wang Q Q, Liu K, Zhao H. Chinese Physics Letters, 2012, 29(4): 044206. [6] Cisewski J, Snyder E, Hannig J, et al. Journal of Chemometrics, 2012, 26(5): 143. [7] Liang L, Zhang T, Wang K, et al. Applied Optics, 2014, 53(4): 544. [8] CHEN Kai, LU Ji-dong(陈 凯,陆继东). High Power Laser and Particle Beams(强激光与粒子束), 2011, 2: 005. [9] Martelli M R, Brygo F, Sadoudi A, et al. Journal of Agricultural and Food Chemistry, 2010, 58(12): 7126. [10] Stipe C B, Hensley B D, Boersema J L, et al. Applied Spectroscopy, 2010, 64(2): 154. [11] Sun L, Yu H. Talanta, 2009, 79(2): 388. [12] Tognoni E, Cristoforetti G, Legnaioli S, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2010, 65(1): 1. [13] SUN Lan-xiang, YU Hai-bin, CONG Zhi-bo, et al(孙兰香,于海斌,丛智博,等). Acta Optica Sinica(光学学报), 2010, 30(9): 2757. [14] D’Andrea E, Pagnotta S, Grifoni E, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2014, 99: 52. [15] ZHANG Dong-bo, HUANG Kun-xin(张东波,黄坤鑫). Information and Control(信息与控制), 2013, 42(5): 583. [16] Yuan T B, Wang Z, Lui S L, et al. Journal of Analytical Atomic Spectrometry, 2013, 28(7): 1045. [17] Ralchenko Y, Kramida A, and Reader J. National Institute of Standards and Technology, Gaithersburg, MD, 2010, [18] Aydin , Roth P, Gehlen C D, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2008, 63(10): 1060. [19] Choi I, Chan G C Y, Mao X, et al. Applied Spectroscopy, 2013, 67(11): 1275. [20] Nunes L C, da Silva G A, Trevizan L C, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2009, 64(6): 565. [21] Leardi R. Journal of Chemometrics, 2001, 15(7): 559. [22] Niazi A, Leardi R. Journal of Chemometrics, 2012, 26(6): 345. [23] Chipperfield A, Fleming P, Pohlheim H, et al. The Genetic Algorithm Toolbox. Dept of Control and Systems Engineering of the University of Sheffield, UK, 1994. [24] Leardi R. Nature-Inspired Methods in Chemometrics. Elsevier Science, 2003. 172. [25] Zhang Y A, Ma Q L, Sakamoto M, et al. Artificial Life and Robotics, 2010, 15(2): 239. [26] SUN Lan, YU Hai-bin, XIN Yong, et al(孙兰香,于海斌,辛 勇,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2010, 30(12): 3186. [27] Zaytsev S M, Popov A M, Chernykh E V, et al. Journal of Analytical Atomic Spectrometry, 2014, 29(8): 1417. [28] Gupta G P, Suri B M, Verma A, et al. Journal of Alloys and Compounds, 2011, 509(9): 3740.