光谱学与光谱分析
|
GFAAS测定氧化砷处理移植性食管癌大鼠后各组织的砷浓度
张 源,罗文鸿,李 慧,沈忠英
汕头大学医学院中心实验室,广东 汕头 515031
Determination of Arsenic in As2 O3 -Treated Esophagoscope-Transplant Mouse Tissue by Graphite Furnace Atomic Absorption Spectrometry
ZHANG Yuan,LUO Wen-hong,LI Hui,SHEN Zhong-ying
Central Laboratories, Shantou University Medical College, Shantou 515031, China
摘要 : 用石墨炉原子吸收法测定了大鼠各组织中的砷浓度。在大鼠移植性肿瘤组织内一次性注射10 μg砷后,观察不同时间大鼠各脏器砷的分布。组织通过80℃水浴用硫酸-硝酸-高氯酸混酸体系封闭消解2 h后,滴加30%双氧水,得到定容的消化液。用0.1% Triton X-100-0.2% AgNO3 溶液作消化液的基体改进剂,D2 灯校正背景,标准加入法校准曲线测定。此法相对标准偏差为3.2%~8.7%之间。检出限为1.57 μg·L-1 。回收率为81.7%~105%。分析结果表明,注射到肿瘤组织内的砷2 h内扩散到其他组织达最大值,而后随机体代谢活动的结果,砷浓度随时间延长又渐渐减少。
关键词 :砷;大鼠组织;GFAAS
Abstract :As2 O3 was injected into tumour tissue of esophagoscope-transplant mouse. The concentration of As diffusing into other tissues was investigated. A method was proposed for the determination of As in tissue samples of mouse by graphite furnace atomic absorption spectrometry. After wet digestion (water-bath at 80℃) with 2∶1∶1(φ ) of HNO3 -H2 SO4 -HClO4 , the digested tissue samples of mouse were diluted with 0.2% Triton X-100-0.4% AgNO3 . The matrix-matching calibration curve of non-interference was established with standard addition method. The relative standard deviation was 3.2%-8.7%. The limit of detection was 1.57 μg·L-1 . The recoveries were 81.7%-105% Arsenic concentrations in mouse liver, kidney, brain, left-chest, and right-chest were determined after injection of arsenic at different times.
Key words :Arsenic;Tissue;GFAAS
收稿日期: 2003-01-21
修订日期: 2003-06-26
通讯作者:
张 源
引用本文:
张 源,罗文鸿,李 慧,沈忠英. GFAAS测定氧化砷处理移植性食管癌大鼠后各组织的砷浓度 [J]. 光谱学与光谱分析, 2004, 24(04): 487-490.
ZHANG Yuan,LUO Wen-hong,LI Hui,SHEN Zhong-ying . Determination of Arsenic in As2 O3 -Treated Esophagoscope-Transplant Mouse Tissue by Graphite Furnace Atomic Absorption Spectrometry . SPECTROSCOPY AND SPECTRAL ANALYSIS, 2004, 24(04): 487-490.
链接本文:
http://www.gpxygpfx.com/CN/Y2004/V24/I04/487
[1] LIU Bo-jing(刘波静). Journal of Zhejiang Agricultural University(浙江农业大学学报), 1999,25(1):57. [2] Kabengera-Charles,Bodart-Patricia,Hubert-Philipper et al. J-AOAC-Int.,2002,85(1): 122. [3] LIU Li,WEI Yu-zhi,SONG Quan-hou(刘 立,魏玉芝,宋全厚). Food and Fermentation Industries(食品与发酵工业), 1999,24(5):9. [4] LI You,LIU Bao-jun,HE Gong-li(李 友,刘宝军,何公理). Modern Scientific Instruments(现代科学仪器),2001, 2:49. [5] QIU Hong-mei,LI Xue-hui(邱红梅,黎雪慧). Hainan Medicine(海南医学),2001,12(6):10.
[1]
万小铭,曾伟斌,雷 梅,陈同斌,. 蜈蚣草孢子囊元素组成的X射线光谱分析 [J]. 光谱学与光谱分析, 2022, 42(02): 478-482.
[2]
. 土壤重金属砷的高光谱估算模型 [J]. 光谱学与光谱分析, 2021, 41(09): 2872-2878.
[3]
. 砷和砷酸铁水化结构和红外光谱理论研究 [J]. 光谱学与光谱分析, 2021, 41(07): 2071-2076.
[4]
. 基于薄膜干涉理论的三阶砷化镓电池散射光谱研究 [J]. 光谱学与光谱分析, 2020, 40(10): 3092-3097.
[5]
. XRD和FTIR对Ce/γ-Al2 O3 除氟除砷的机理研究 [J]. 光谱学与光谱分析, 2020, 40(09): 2869-2874.
[6]
. 湖南白云铺金矿含砷黄铁矿和毒砂环带的原位拉曼光谱研究 [J]. 光谱学与光谱分析, 2020, 40(08): 2525-2530.
[7]
. 水浴消解-原子荧光光谱法测定土壤和沉积物中砷、汞、硒、锑和铋 [J]. 光谱学与光谱分析, 2020, 40(05): 1528-1533.
[8]
. 基于光谱分析的砷黄铁矿生物浸出过程中铁/砷/硫形态转化研究 [J]. 光谱学与光谱分析, 2020, 40(03): 934-940.
[9]
. 太赫兹片上系统中低温砷化镓薄膜光电导天线的研究 [J]. 光谱学与光谱分析, 2019, 39(10): 3308-3312.
[10]
. 氢化物发生-液体阴极辉光放电发射光谱对海水中硒、砷、汞的高灵敏定量检测 [J]. 光谱学与光谱分析, 2019, 39(05): 1359-1365.
[11]
. 电感耦合等离子体质谱法研究云南某矿区周边不同样品中砷污染水平和风险评价 [J]. 光谱学与光谱分析, 2019, 39(03): 990-996.
[12]
. HPLC-ICP-MS联用技术研究甲醇对砷形态分析结果的影响 [J]. 光谱学与光谱分析, 2018, 38(06): 1884-1888.
[13]
. 便携式X射线荧光光谱快速无损分析牛黄清心丸(局方)中汞、砷含量及均匀度 [J]. 光谱学与光谱分析, 2017, 37(10): 3225-3228.
[14]
. 波长与能量色散复合式X射线荧光光谱仪特性研究及矿区土壤分析 [J]. 光谱学与光谱分析, 2017, 37(07): 2216-2224.
[15]
. 电感耦合等离子体质谱法研究黄河甘宁蒙段附近居民砷暴露水平 [J]. 光谱学与光谱分析, 2017, 37(05): 1628-1633.