Abstract:Raman spectra of lead tellurite glasses and their melts were measured. Results show that four coordinate tellurite units convert into three coordinate units with increasing the concentration of PbO, and the number of non-bridging oxygen bonds (NBO) increases accordingly in this system. Three spectral peaks in the high frequency range were assigned to stretching vibration of bridging oxygen in four coordinate tellurite units (Qb), stretching vibration of non-bridging oxygen in four coordinate tellurite units (Qnb) and in three coordinate tellurite units (Tnb). The relative density of four coordinate structure units decreases and the three coordinate tellurite units considerably exist in tellurite glasses when the concentration of PbO>50%. Besides, the Raman frequencies of the three species’ peaks become blue-shifted because of the temperature induced crystallization at high temperature, and the peak intensities increase and the peaks sharpen. The peaks merge together and become much broader while the glass is heated above the melting point because of multiple microstructure units coexisting.
Key words:Tellurite glasses;Raman spectra;Microstructure units
[1] Stanworth J E. J. Soc. Glass Tech., 1952, 36:217. [2] Mori A, Ohishi Y, Sudo S. Electronics Letters, 1997, 33(10):863. [3] Yamada M, Mori A, Kobayashi K. IEEE Photonics Technology Letters, 1998, 10(9):244. [4] Mori A, Kobayashi K, Yamada M. Electronics Letters, 1998, 34(9):887. [5] McLaughlin J C, Tagg S L, Zwanziger J W,et al. J. Non-Cryst. Solids, 2000, 274:1. [6] Neov S, Gerassimoya I, Krezhov K. Phys. Status Solidi, 1978, 47:743. [7] Johnson P A V, Wright A C. J. Non-Cryst. Solids, 1986, 81:163. [8] Mochida N, Takahashi K. Nippon Sevamikkusu Kyokai Gakujutsu Ronbunshi—Journal of Ceramic Society of Japan, 1978, 86:316. [9] Bürger H., Kneipp K., Hobert H. et al, J. Non-Cryst. Solids, 1992, 151:134. [10] Himei Y, Osaka A, Nanba T,et al. J. Non-Cryst. Solids, 1994, 177:164. [11] Becker C R, Tagg S L, Huffman J C,et al. Inorg. Chem., 1997, 36:5559. [12] McLaughlin J C, Tagg S L, Zwanziger J W. J. Phys. Chem. B, 2001, 105:67. [13] Khatir S, Bolka J, Capoen B, et al. J. Molec. Struct., 2001, 563 & 564:283. [14] Raul F Cuevas, Ana M de Paula, et al. Quimica Nova, 1998, 21(3):361. [15] LI An-lin, YOU Jing-lin, CHEN Hui, et al(李安林,尤静林,陈 辉,等). Journal of the Chinese Ceramic Society(硅酸盐学报), 2005, 33:587. [16] You J L, Jiang G C, Hou H Y,et al. J. Raman Spectrosc., 2005, 36:237. [17] ZENG Hao, YOU Jing-lin, CHEN Hui, et al(曾 昊,尤静林,陈 辉,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2007,27(6):1143. [18] CHEN Hui, JIANG Guo-chang, YOU Jing-lin, et al(陈 辉,蒋国昌,尤静林,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2007,27(12):2469. [19] Dewan J C, Edwards A J, Jones G R,et al. J. Chem. Soc.-Dalton Transaction, 1978, (11):1528. [20] Tagg S L, Huffman J C, Zwanziger J W. Acta Chemica Scandinavica, 1997, 51:118. [21] Tagg S L, Huffman J C, Zwanziger J W. Chemistry of Materials, 1994, 6:1884. [22] Masse R, Guitel J C. Materials Research Bulletin, 1980, 15:431. [23] Champarnaud-Mesjard J C, Blanchandin S, Thomas P,et al. J. Phys. Chem. Solids, 2000, 61:1499.