光谱学与光谱分析
|
无毒紫外吸收剂的制备及光谱特性分析
方奕文1 ,倪文秀1 ,黄翀2 ,薛亮1 ,余林1
1. 汕头大学化学系,广东 汕头 515063 2. 汕头大学物理系,广东 汕头 515063
Extraction and Spectral Properties Analysis of Innoxious Ultraviolet Absorbents
FANG Yi-wen1 , NI Wen-xiu1 , HUANG Chong2 , XUE Liang1 , YU Lin1
1. Department of Chemistry, Shantou University, Shantou 515063, China 2. Department of Physics, Shantou University, Shantou 515063, China
摘要 : 对鸡蛋花树叶、芒果树叶、桂花树叶等几十种天然植物进行紫外吸收剂的提取,并对提取的紫外吸收剂进行光谱特性分析。通过对光谱特性分析结果的比较,选择紫外吸收效果最好的植物,探索提取紫外吸收剂的方法。结果显示,以芒果树叶为原料,蒸馏水为提取溶剂,乙醇为沉淀剂,得到的紫外吸收剂效果好,提取物配制成浓度为1%(w /w )的溶液,在整个紫外区(200~400 nm)紫外光透过率不超过1%。产物无毒,收率为1.5%。
关键词 :天然植物;紫外吸收剂;提取;光谱特性
Abstract :Some dozens of ultraviolet absorbents were extracted from leaves of pure natural plants, such as frangipani, mango, and sweet-scented osmanthus. Then the spectral properties of these ultraviolet absorbents were analyzed. The plant that has the best effect of absorbing ultraviolet ray was selected by comparing one with the others. And the method of extracting ultraviolet absorbent was studied. The results showed that the method, which used leaves of mango as material, distilled water as extracted solvent, and alcohol as precipitator, was satisfactory. When the concentration of ultraviolet absorbent solution is 1%(w/w ), the ultraviolet ray transmission is smaller than 1% in 200-400 nm. The rate of production is 1.5%. It is innoxious.
Key words :Natural plant;Ultraviolet absorbent;Extraction;Spectral property
收稿日期: 2005-02-26
修订日期: 2005-06-08
通讯作者:
方奕文
引用本文:
方奕文1 ,倪文秀1 ,黄翀2 ,薛亮1 ,余林1 . 无毒紫外吸收剂的制备及光谱特性分析[J]. 光谱学与光谱分析, 2006, 26(06): 1120-1122.
FANG Yi-wen1 , NI Wen-xiu1 , HUANG Chong2 , XUE Liang1 , YU Lin1 . Extraction and Spectral Properties Analysis of Innoxious Ultraviolet Absorbents . SPECTROSCOPY AND SPECTRAL ANALYSIS, 2006, 26(06): 1120-1122.
链接本文:
https://www.gpxygpfx.com/CN/Y2006/V26/I06/1120
[1] TU Guo-rong, WANG Xu-hui(涂国荣, 王旭辉). China Surfactant Detergent and Cosmetics(日用化学工业),2002,32(1):55. [2] TU Guo-rong, WANG Wu-shang, ZHANG Li-xing(涂国荣, 王武尚, 张利兴). China Surfactant Detergent and Cosmetics(日用化学工业),2000, 30 (5):18. [3] YIN Yan-qiu, LIU Yun(尹彦秋, 刘 云). China Surfactant Detergent and Cosmetics(日用化学工业),2003, 33 (3):174. [4] HUANG Chong, FANG Yi-wen, OUYANG Yan-dong, et al(黄 翀, 方奕文, 欧阳艳东, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2004,24(11):1425. [5] HUANG Chong, OUYANG Yan-dong, FANG Yi-wen, et al(黄 翀, 欧阳艳东, 方奕文, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2004, 24(12):1649.
[1]
李欣庭,张 峰,冯 洁. 卷积神经网络结合改进光谱处理方法用于马铃薯病害检测 [J]. 光谱学与光谱分析, 2024, 44(01): 215-224.
[2]
黎晓淀,唐 念,张曼君,孙东伟,赫树开,汪献忠,曾晓哲,王幸辉,刘西亚. 新型环保绝缘气体C5-PFK的红外光谱特性及混合比检测方法研究 [J]. 光谱学与光谱分析, 2023, 43(12): 3794-3801.
[3]
郑舒元,海 燕,何孟琦,王建雄. 高区分度的高分六号影像可见光波段植被指数构建 [J]. 光谱学与光谱分析, 2023, 43(11): 3509-3517.
[4]
钱 瑞,徐伟恒,黄邵东,王雷光,鲁 宁,欧光龙. 应用GF-5高光谱遥感影像提取山区茶园 [J]. 光谱学与光谱分析, 2023, 43(11): 3591-3598.
[5]
魏子凯,王 杰,张若宇,张梦芸. 棉花内层杂质的高光谱透射成像分类检测 [J]. 光谱学与光谱分析, 2023, 43(10): 3230-3238.
[6]
王敬湧,谢洒洒,盖倞尧,王梓廷. 花叶病胁迫下甘蔗叶片叶绿素含量的高光谱预测模型 [J]. 光谱学与光谱分析, 2023, 43(09): 2885-2893.
[7]
闫明亮,张辰龙,赵连祥,赵华鹤,高 勋. 飞秒激光诱导锗等离子体辐射光谱特性 [J]. 光谱学与光谱分析, 2023, 43(07): 2095-2098.
[8]
袁凯欣,卓 瑾,张清华,李亚国. CO2 激光改性溶胶-凝胶SiO2 薄膜光谱及紫外纳秒激光损伤特性研究 [J]. 光谱学与光谱分析, 2023, 43(06): 1752-1759.
[9]
代 硕,夏 清,张 涵,何厅厅,郑 琼,邢学敏,李 冲. 利用Sentinel-2多光谱影像构建一种潮滩提取指数 [J]. 光谱学与光谱分析, 2023, 43(06): 1888-1894.
[10]
冯英超,黄一鸣,刘金平,贾晨鹏,陈 鹏,武少杰,任绪凯,余焕伟. 基于发射光谱的激光填丝焊接过程监测研究 [J]. 光谱学与光谱分析, 2023, 43(06): 1927-1935.
[11]
贾梦梦,殷 勇,于慧春,袁云霞,王志豪. 高光谱成像融合特征波长筛选监测番茄贮藏中品质变化的方法 [J]. 光谱学与光谱分析, 2023, 43(03): 969-975.
[12]
安 桓,闫好奎,向 梅,布玛丽亚·阿布力米提,郑敬严. 基于外电场作用对二溴苯的光谱特性和解离特性 [J]. 光谱学与光谱分析, 2023, 43(02): 405-411.
[13]
冯 鑫,方 超,龚海峰,娄熙承,彭 烨. 二尺度分解和显著性提取的红外与可见光图像融合 [J]. 光谱学与光谱分析, 2023, 43(02): 590-596.
[14]
张海洋,张 瑶,田泽众,吴江梅,李民赞,刘凯迪. 基于GBDT和Google Earth Engine的冬小麦种植结构提取 [J]. 光谱学与光谱分析, 2023, 43(02): 597-607.
[15]
王志新,王慧荟,张文波,王 忠,李月娥. 基于拉曼光谱和机器学习的百合分类识别 [J]. 光谱学与光谱分析, 2023, 43(01): 183-189.