Eliminating the Influence of Moiré Fringes on Upper Atmospheric Wind Measurement Accuracy in GBAII-DASH
HUI Ning-ju1, 2, WANG Yan-long1, LI Wen-wen1, LIU Yang-he3, LI Cun-xia1, 2, ZHANG Yi-shan1, FU Di-di1, TANG Yuan-he1*
1. School of Science, Xi'an University of Technology, Xi'an 710048,China
2. Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi'an 710048,China
3. School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048,China
摘要: 为了提高中高层大气风速的探测精度,研制了Ground Based Airglow Imaging Interferometer-Doppler Asymmetric Spatial Heterodyne Spectroscopy(GBAII-DASH)成像干涉系统,研究了其产生的周期性干涉直条纹与阵列CCD探测器以一定耦合角重叠时所产生的莫尔条纹对系统测风精度的影响,提升了系统的测风精度。分析了GBAII-DASH系统莫尔条纹的成因。利用“四强度法”和“傅里叶变换法”两种方法,从不同耦合角度下产生的包含莫尔条纹的干涉图中提取了正演风速,得到平均测风相对误差分别为3.07%和6.89%,“四强度法”具有更高的测风精度。利用频谱分析方法模拟了莫尔条纹对CCD探测器的像素和GBAII-DASH系统的干涉条纹两者空间频率的差值大小的依赖关系,发现增大两者差值可改善莫尔条纹对测风精度的影响。在实验室内得到了有、无莫尔条纹的两种干涉图,并将室外探测的测风结果与西安上空90~100 km的过境卫星仪器Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics Doppler Interferometer(TIDI)的观测结果进行了比较,发现GBAII-DASH与TIDI探测西安上空90~100 km的大气风速误差仅为0.3 m·s-1。由此可见,消除莫尔条纹后再利用“四强度法”确实大大提高了系统的测风精度。
关键词:莫尔条纹;测风精度;“四强度法”测风
Abstract:To enhance the detection accuracy of wind speed in the middle and upper atmosphere, GBAII-DASH (Ground-Based Airglow Imaging Interferometer-Doppler Asymmetric Spatial Heterodyne Spectroscopy) imaging interferometer system was developed. The influence of Moiré fringes generated when the periodic interference of straight fringes produced by the system overlapswith the array CCD detector at a certain coupling angle on the wind measurement accuracy of the system was studied, and the wind measurement accuracy of the system was improved. This paper analyzed the cause of Moiré fringes in the GBAII-DASH system. Using the “Four-point algorithm” and the “Fourier transform method”, the forward wind speed was extracted from the interference patterns containing Moiré fringes generated at different coupling angles. The average relative wind measurement errors were 3.07% and 6.89% respectively, so the “Four-point algorithm” had higher wind measurement accuracy. The spectral analysis method simulated the relationship between the difference in spatial frequency between the Moiré fringes and the interference fringes of the GBAII-DASH system and the CCD detector. It was found that increasing the difference could improve the influence of the Moiré fringes on the wind measurement accuracy.The laboratory obtained two types of interference patterns with and without moiré fringes. The wind speed measurement results detected outdoors were compared with the observations of the satellite instrument TIDI (Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics Doppler Interferometer) passing over Xi'an at an altitude of 90~100 km. It was found that the wind speed error of the GBAII-DASH and TIDI in detecting the atmosphere above Xi'an at 90~100 km was only 0.3 m·s-1. Thus it can be seen that eliminating the moiré fringes and then using the “Four-point algorithm” greatly improves the system's wind measurement accuracy.
惠宁菊,王彦龙,李文文,刘洋河,李存霞,章艺珊,符迪迪,唐远河. GBAII-DASH中消除莫尔条纹对高层大气测风精度的影响[J]. 光谱学与光谱分析, 2025, 45(08): 2266-2272.
HUI Ning-ju, WANG Yan-long, LI Wen-wen, LIU Yang-he, LI Cun-xia, ZHANG Yi-shan, FU Di-di, TANG Yuan-he. Eliminating the Influence of Moiré Fringes on Upper Atmospheric Wind Measurement Accuracy in GBAII-DASH. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(08): 2266-2272.
[1] Hays P B, Abreu V J, Dobbs M E, et al. Journal of Geophysical Research: Atmospheres, 1993, 98(D6): 10713.
[2] Shepherd G G, Thuillier G, Gault W A, et al. Journal of Geophysical Research: Atmospheres, 1993, 98(D6): 10725.
[3] McLandress C, Shepherd G G, Solheim B H, et al. Journal of Geophysical Research: Atmospheres, 1996, 101(D6): 10441.
[4] Killeen T L, Wu Q, Solomon S C, et al. Journal of Geophysical Research: Space Physics, 2006, 111(a10): A10S01-1.
[5] LI Jin-hua, ZHANG Min-juan, WANG Zhi-bin, et al(李晋华,张敏娟,王志斌,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2022, 42(6): 1974.
[6] Englert C R, Harlander J M, Marr K D, et al. Space Science Reviews, 2023, 219(3): 27.
[7] Englert C R, Harlander J M, Babcock D D, et al. Proceedings of SPIE, 2006, 6303: 63030T.
[8] PENG Xiang, LIU En-hai, TIAN Shu-lin, et al(彭 翔, 刘恩海, 田书林, 等). Acta Physica Sinica(物理学报), 2022, 71(24): 240601.
[9] Gao H Y, Tang Y H, Hua D X, et al. Applied Optics, 2013, 52(36): 8650.
[10] Tang Y H, Duan X D, Gao H Y, et al. Applied Optics, 2014, 53(11): 2273.
[11] Tang Y H, Yang R, Gao H Y, et al. Proceedings of SPIE, 2017, 10256: 102563C.
[12] FANG Yan, LI Cun-xia, HUI Ning-ju, et al(方 妍, 李存霞, 惠宁菊, 等). Chinese Journal of Geophysics(地球物理学报),2024, 67(3): 960.
[13] LI Wen-wen, HUI Ning-ju, LI Cun-xia, et al(李文文, 惠宁菊, 李存霞, 等). Acta Physica Sinica(物理学报), 2023, 72(24): 240601.
[14] Savelje V V, Son J-Y, Javidi B, et al. Journal of Display Technology, 2005, 1(2): 347.
[15] Savelje V V, Kim S-K. Optics Express, 2013, 21(2): 1693.
[16] WANG Xue-li, LI Gen-qian, ZHAO Hong, et al(王学礼, 李根乾, 赵 宏, 等). Semiconductor Optoelectronics(半导体光电), 2001, 22(1): 65.
[17] TIDI: TIMED Doppler Interferometer TIMED Instrument: http://tidi.engin.umich.edu. Michigan Engineering, 2025.