Abstract:To prevent the adulteration of pure milk and optimize the detection methods of pure milk, a recognition scheme for pure milk based on near-infrared spectroscopy is proposed in this paper. Firstly, a Fourier near-infrared spectrometer was adopted to obtain the near-infrared spectroscopy signals of different pure milk products from the same brand within the wavelength range of 4 000~10 000 cm-1. Since the obtained near-infrared spectroscopy signal data is relatively redundant, this paper utilized a principal component analysis algorithm to extract the feature information of the near-infrared spectroscopy signal data within this range to improve the recognition efficiency of pure milk. Four principal components with larger contributions were extracted to obtain the training and testing sample data. Then, the back propagation neural algorithm was employed for preliminary training and testing of the obtained sample data. The test results show that the BP neural network algorithm combined with principal component analysis improves recognition efficiency of pure milk and achieves an accuracy of up to 95%. To further improve the algorithm's accuracy, the particle swarm optimization algorithm was added to the proposed pure milk recognition scheme to optimize the weights and thresholds in the BP neural network. Additionally, a new dynamic decreasing inertia weight factor function was proposed in the particle swarm optimization algorithm for the inertia weight factor. Experiments show that the accuracy of the proposed intelligent recognition scheme for pure milk can be increased to 100%. Therefore, the intelligent recognition scheme for pure milk based on near-infrared spectroscopy can accurately and effectively identify the types of pure milk.
Key words:Near infrared spectroscopy; BP neural network; PSO; Classification and recognition
胡少文,黄浪鑫,余里辉,吴志平,李怀玉,施炜利,罗洪昱. 基于近红外光谱纯牛奶智能识别[J]. 光谱学与光谱分析, 2025, 45(07): 1827-1833.
HU Shao-wen, HUANG Lang-xin, YU Li-hui, WU Zhi-ping, LI Huai-yu, SHI Wei-li, LUO Hong-yu. Intelligent Recognition of Pure Milk Based on Near Infrared Spectroscopy. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(07): 1827-1833.
[1] SHEN Kang, HU Kai-yan, ZHU Yu-tong, et al(沈 康, 胡开颜, 朱雨彤, 等). Chemical Bulletin(化学通报), 2024, 87(2): 235.
[2] GUO Ya-li, SHAO Yan-ming(郭娅丽, 邵彦铭). Theoretical Exploration(理论探索),2015,(6): 123.
[3] MENG Diao-qin, XU Hong-tao, HOU Lin, et al(孟掉琴, 徐洪涛, 侯 林, 等). China Food Additives(中国食品添加剂), 2024, 35(12): 89.
[4] YANG Ji-yong, ZHANG Yang-dong, ZHENG Nan, et al(杨继勇, 张养东, 郑 楠, 等). Chinese Journal of Animal Nutrition(动物营养学报), 2022, 34(5): 2790.
[5] ZHENG Yu-ling, WANG Ye, LÜ Qing-yu(郑玉玲, 王 叶, 律清宇). Chinese Journal of Cellular and Molecular Immunology(细胞与分子免疫学杂志), 2023, 39(12): 1089.
[6] ZHANG Juan, YU Wen-jie, WANG Nan, et al(张 娟, 于文杰, 王 楠, 等). Journal of Food Safety & Quality(食品安全质量检测学报), 2024, 15(7): 133.
[7] Cao M R, Wang J, Wang M T, et al. Journal of Future Foods, 2024, 4(4): 369.
[8] LIU Mei-chen, XUE He-ru, LIU Jiang-ping, et al(刘美辰, 薛河儒, 刘江平, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2022, 42(5): 1601.
[9] WANG Lei, GUO Zhong-hua, JIN Ling, et al(王 磊, 郭中华, 金 灵, 等). Laser & Infrared(激光与红外), 2013, 43(10): 1133.
[10] ZHAO Xiao-wei, ZHENG Nan, WANG Jia-qi, et al(赵小伟, 郑 楠, 王加启, 等). Chinese Journal of Animal Nutrition(动物营养学报), 2024, 36(9): 5451.
[11] YE Chen-kui, YUAN Chong, WANG Xiao-gang(叶陈奎, 袁 冲, 王晓岗). Chemical Engineering Design Communications(化工设计通讯), 2020, 46(8): 204.
[12] WANG Sheng-peng, GAO Shi-wei, TENG Jing, et al(王胜鹏, 高士伟, 滕 靖, 等). Journal of Huazhong Agricultural University(华中农业大学学报), 2021, 40(5): 226.
[13] GUO Shuai, SU Hang, HUANG Xing-can, et al(郭 帅, 苏 杭, 黄星灿, 等). Chinese Optics(中国光学), 2019, 12(6): 14.
[14] LI Wen-xin, LANG Xiao-e, LAN Yu, et al(李文昕, 郎小娥, 兰 宇, 等). Chinese Nursing Research(护理研究), 2024, 38(23): 4289.
[15] WANG Zi-xi, SHEN Qun, ZHAO Qing-yu(王子熙, 沈 群, 赵卿宇). Food Science(食品科学), 2025, 46(3): 267.
[16] CHEN Jing, WEN Ya-jun, ZHANG Yan-guo, et al(陈 晶,温雅君, 张延国, 等). China Vegetables(中国蔬菜), 2024, (11): 106.
[17] MA Jun, LIU Gang, LI Chao, et al(马 俊, 刘 刚, 李 超,等). Metrology Science and Technology(计量科学与技术), 2023, 67(1): 23.
[18] XU Wen-jing, CHEN Chang-lin, DENG Sha, et al(许文静, 陈昌琳, 邓 莎, 等). Science and Technology of Food Industry(食品工业科技), 2022, 43(13): 311.
[19] GE Kun, HE Zhi-feng, LIN Jia-na, et al(葛 琨, 何致峰, 林佳娜, 等). Journal of Instrumental Analysis(分析测试学报), 2021, 40(11): 1588.
[20] LI Nan-nan, LIU Ye-jia, LIN Li-zhong, et al(李楠楠, 刘也嘉, 林利忠, 等). Food Science(食品科学), 2022, 43(4): 277.
[21] Li G, Tan Z, Xu W, et al. BMC Medical Informatics and Dicision Making, 2021, 21(S2): 99.
[22] YANG Ze-rui, HU Hong-ping(杨泽锐, 胡红萍). Journal of North University of China(Natural Science Edition)[中北大学学报(自然科学版)], 2024, 45(6): 725.
[23] LIU Xiu-ying, YU Jun-ru, WANG Shi-hua(刘秀英, 余俊茹, 王世华). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2020, 36(22): 308.
[24] CHAI Yan, CHANG Xiao-meng, REN Sheng(柴 岩, 常晓萌, 任 生). Computer Engineering and Applications(计算机工程与应用), 2025, 61(5): 76.
[25] CHEN Hong, HUANG Yong-hui, ZHANG Zhi-yu, et al(陈 泓, 黄永辉, 张智宇, 等). Nonferrous Metals(有色金属), 2025, 15(2):288.
[26] Zhang C X, Bian X H, Liu P. Chemometrics and Intelligent Laboratory Systems, 2017, 161: 43.
[27] Chen H, Tan C, Lin Z, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 173: 832.
[28] Chen H, Tan C, Lin Z, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 189: 183.
[29] Chen H, Tan C, Lin Z, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 251: 119460.
[30] Pereira E V D S, Fernandes D D S, Araújo M C U, et al. LWT-Food Science and Technology, 2020, 127: 109427.