Improved Particle Swarm Optimization Algorithm Combined With BP Neural Network Model for Prediction of Total Phosphorus Concentration in Water Body Using Transmittance Spectral Data
ZHANG Guo-hao1, WANG Cai-ling1*, WANG Hong-wei2*, YU Tao3
1. College of Computer Science, Xi'an Shiyou University, Xi'an 710065, China
2. School of Artificial Intelligence, Optics and Electronics, Northwestern Polytechnical University, Xi'an 710065, China
3. Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences,Xi'an 710065, China
Abstract:The accurate detection of pollution levels in water bodies using transmission spectrum data and fusion algorithms has become crucial for safeguarding water resources. Inaccurate predictions and detection frequently result from the high-dimension of transmission spectrum data and model instability. The Yangtze River water body's total phosphorus concentration content is predicted in this study, and an accurate and environmentally friendly approach is suggested to achieve this goal. In particular, maxi-min normalization and mean-centering are two preprocessing operations carried out on the Yangtze River's measured water quality transmission spectrum data. These operations remove noise while eradicating differences between different data magnitudes, guaranteeing the consistency and reliability of the data. In addition, to solve the problem of the high dimension of the transmission spectrum data, the KPCA method is used to reduce the dimension of the data and extract the features. The KPCA method is used to select the top 6 principal components that represent 99.42% of the information content of the original data for subsequent prediction model training by finding a classification plane in a high-dimension space. Then, on the foundation of the initial particle swarm algorithm, the particle initialization rule, multiple swarm competition strategy, parameter adaptive update strategy, population diversity guidance strategy, and particle variation mechanism are added to improve the particle swarm's capacity for optimization and prevent particles from trapping in the local optimal solution. Additionally, the improved particle swarm algorithm optimizes the initialized weights and parameter values in the BP neural network to accelerate the convergence of the network and improve prediction performances. Finally, the total phosphorus content of the samples in the test set was predicted using the IMCPSO-BPNN model. The experimental results showed an R2 of 0.975 786, an RMSE of 0.002 242, and an MAE of 0.001 612. The IMCPSO-BPNN model suggested in this work has a better fitting effect and better accuracy in forecasting the total nitrogen concentration in the Yangtze River water body when compared to other models such as the RF model, the BPNN model, and the PSO-BPNN model. It offers fresh concepts and viewpoints for studying and applying predictive modeling using transmission spectrum data and fusion algorithms to protect water resources and environmental management.
Key words:Transmission spectrum; Improved particle swarm Optimization algorithm; BP Neural network; Kernel principal component analysis (KPCA); Total phosphorus concentration
张国浩,王彩玲,王洪伟,于 涛. 改进粒子群优化算法结合BP神经网络模型的水体透射光谱总磷浓度预测研究[J]. 光谱学与光谱分析, 2025, 45(02): 394-402.
ZHANG Guo-hao, WANG Cai-ling, WANG Hong-wei, YU Tao. Improved Particle Swarm Optimization Algorithm Combined With BP Neural Network Model for Prediction of Total Phosphorus Concentration in Water Body Using Transmittance Spectral Data. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2025, 45(02): 394-402.
[1] WANG Cai-ling, WANG Bo, JI Tong, et al(王彩玲, 王 波, 纪 童, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2022, 42(7): 2181.
[2] FENG Tian-shi, PANG Zhi-guo, JIANG Wei, et al(冯天时, 庞治国, 江 威, 等). Journal of Geo-information Science(地球信息科学学报), 2021, 23(9): 1646.
[3] HUANG Hua, LI Mao-yi, CHEN Yin-hui, et al(黄 华, 李茂亿, 陈吟晖, 等). Water Resources Protection(水资源保护), 2021, 37(5): 36.
[4] CHEN Jun-ying, XING Zheng, ZHANG Zhi-tao, et al(陈俊英, 邢 正, 张智韬, 等). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2019, 50(11): 200.
[5] FU Yu, WAN Xiao-xia, LIU Zhi-hong, et al(付 玉, 万晓霞, 刘志宏,等). Printing and Digital Media Technology Study(印刷与数字媒体技术研究), 2023,(2): 22.
[6] YANG Feng(杨 峰). Computer Simulation(计算机仿真), 2019, 36(8): 435.
[7] DONG Jun-shuo, WU Ling-da(董隽硕, 吴玲达). Computer Engineering and Design(计算机工程与设计), 2023, 44(4): 1122.
[8] LI Chang-yuan, LIU Guo-dong, TAN Bo(李昌元, 刘国栋, 谭 博). Geospatial Information(地理空间信息), 2022, 20(7): 89.
[9] ZHANG Qin-yu, HU Zhi-gang, XU Zi-jian, et al(张沁宇, 胡志刚, 徐子健,等). Journal of Food Safety & Quality(食品安全质量检测学报), 2023, 14(22): 200.
[10] HU Jin-hua, ZHENG Bing-li, DENG Yu-jing, et al(胡劲华, 郑炳理, 邓玉静,等). Laser & Optoelectronics Progress(激光与光电子学进展), 2023, 60(21): 149.
[11] YANG Yang, XU Xi-ping, XUE Hang, et al(杨 洋, 徐熙平, 薛 航,等). Laser Technology(激光技术), 2024, 48(4): 556.
[12] SUN Wei, ZHU Ying, LI Chang-xiu, et al(孙 巍, 朱 颖, 李长秀, 等). Environmental Pollution & Control(环境污染与防治), 2022, 44(12): 1628.
[13] LIN Nan, LIU Han-lin, MENG Xiang-fa, et al(林 楠, 刘翰霖, 孟祥发,等). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2021, 52(3): 218.
[14] XU Han-qiu, LI Chun-qiang, LIN Meng-jing(徐涵秋, 李春强, 林梦婧). Geomatics and Information Science of Wuhan University[武汉大学学报(信息科学版)], 2023, 48(4): 506.
[15] DUAN Yi-fan, LIU Xiao-jie, LI Xin, et al(段一凡, 刘小杰, 李 欣,等). China Metallurgy(中国冶金), 2023, 33(11): 114.
[16] KANG Yan-song, ZANG Shun-lai(康岩松, 臧顺来). Journal of Northeastern University(Natural Science)[东北大学学报(自然科学版)], 2023, 44(8): 1089.
[17] LIU Gong-zhi, WU Qiong, WANG Guang-yi, et al(刘公致, 吴 琼, 王光义,等). Journal of Electronics & Information Technology(电子与信息学报), 2022, 44(10): 3602.
[18] WANG Zhen-dao, ZHANG Yi-ming, SHI Xue-qian(王镇道, 张一鸣, 石雪倩). Journal of Hunan University(Natural Sciences)[湖南大学学报(自然科学版)], 2021, 48(6): 80.
[19] ZHANG Hu, ZHANG Heng, HUANG Zi-lu, et al(张 虎, 张 衡, 黄子路,等). Journal of System Simulation(系统仿真学报), 2024, 36(4): 844.
[20] GUAN Ren-chu, HE Bao-run, LIANG Yan-chun, et al(管仁初, 贺宝润, 梁艳春,等). Journal of Jilin University(Engineering and Technology Edition)[吉林大学学报(工学版)], 2022, 52(8): 1842.
[21] LI Wei, DING Shu-hui, CHEN Xun-jun(李 伟, 丁书慧, 陈勋俊). Application Research of Computers(计算机应用研究), 2023, 40(11): 3254.
[22] WEI Hai-bin, WEI Dong-sheng, JIANG Bo-yu, et al(魏海斌, 魏东升, 蒋博宇,等). Journal of South China University of Technology(Natural Science Edition)[华南理工大学学报(自然科学版)], 2023, 51(6): 62.
[23] SHI Jing-can, TANG Shou-feng, ZHAO Zhi-wei, et al(史经灿, 唐守锋, 赵志伟,等). Transducer and Microsystem Technologies(传感器与微系统), 2023, 42(7): 70.
[24] CHENG Mei-ying, QIAN Qian, NI Zhi-wei(程美英, 钱 乾, 倪志伟). Control and Decision(控制与决策), 2024, 39(3): 728.
[25] WANG Kun, HOU Shu-xian, WANG Li(王 坤, 侯树贤, 王 力). Systems Engineering and Electronics(系统工程与电子技术), 2021, 43(2): 526.
[26] SONG Yu-cun, GE Quan-bo, ZHU Jun-long, et al(宋玉存, 葛泉波, 朱军龙,等). Acta Aeronautica et Astronautica Sinica(航空学报), 2023, 44(14): 327951.