Spectral Characteristics of Typical Sandy Land Reflectance and Satellite Surface Product Validation in the Qinghai-Tibet Plateau
LIU Yong1, 2, XU Hua1, 2*, LI Li2, JI Shan3, WANG Bo-lin2, LUO Jie2, LI Kai-tao4, ZHENG Yang2, QIE Li-li2, JIANG Qi-feng1, LI Zheng-qiang1, 2
1. School of Aeronautics and Astronautics, Xihua University Engineering Research Center of Intelligent Air- Ground Integration Vehicle and Control, Key Laboratory of Fluid and Power Machinery, Xihua University, Chengdu 610039, China
2. State Environmental Protection Key Laboratory of Satellite Remote Sensing & State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
3. PLA 31002 Unit, Beijing 100096, China
4. School of Aerospace Information, Space Engineering University,Beijing 101416,China
Abstract:Measuring surface reflectance is crucial for studying the spectral characteristics of ground objects and inspecting satellite surface products. This paper uses a ground spectrometer to measure the sand surface reflectance in the Ali region of the Qinghai-Tibet Plateau, and studies and analyzes its typical spectral characteristics. Conduct authenticity testing and error impact analysis on the surface reflectance products (MOD09/MYD09) and surface albedo products (MCD43 A4) generated by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra and Aqua satellites. The results indicate that the Gobi in the Ngari region exhibits typical sand spectral characteristics. The surface reflectance values in each band range from 0.08 to 0.35. The surface reflectance in the 300~700 nm spectral range increases with the wavelength, while in the 750~1 750 nm spectral range, the surface reflectance also increases with the wavelength. The surface reflectance changes less in the nm spectral range. Compared to my country's sand reflectance of the Dunhuang radiation correction field, the spectral curve is very similar, and the spectral angle is 2.18°. The observation geometry and atmospheric lighting conditions influence the results of the star-ground comparison. The validation accuracy of the afternoon star Aqua product is superior to that of the morning star Terra, with an average error of approximately 5%, aligning with the official nominal accuracy of MODIS. Research shows that the spectral characteristics of the sandy land in the Ngari area are stable and representative, making it an ideal site for on-orbit radiation calibration and inspection of our country's optical satellites.
Key words:Surface reflectance; Sandy land spectrum; Data validation; MODIS surface product
刘 勇,许 华,李 莉,纪 山,王博林,罗 杰,李凯涛,郑 杨,伽丽丽,江启峰,李正强. 青藏高原典型沙地地表反射率光谱特征与星地验证[J]. 光谱学与光谱分析, 2024, 44(11): 3228-3235.
LIU Yong, XU Hua, LI Li, JI Shan, WANG Bo-lin, LUO Jie, LI Kai-tao, ZHENG Yang, QIE Li-li, JIANG Qi-feng, LI Zheng-qiang. Spectral Characteristics of Typical Sandy Land Reflectance and Satellite Surface Product Validation in the Qinghai-Tibet Plateau. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(11): 3228-3235.
[1] Tan K,Wang X, Niu C, et al. IEEE Transactions on Geoscience and Remote Sensing,2021,59(4):3409.
[2] HUANG Dong,LI Xin,ZHANG Yan-na,et al(黄 冬,李 新,张艳娜,等). Acta Photonica Sinica(光子学报),2022,51(12): 1212004.
[3] ZHANG Peng-fei,LI Guo-ping(张鹏飞,李国平). Journal of Mountain Science(山地学报),2007,5(6): 649.
[4] Hu Xiuqing,Wang Ling,Wang Junwei,et al. Remote Sensing,2020,12(16): 2517.
[5] Thome K J,Biggar S F,Wisniewski W. IEEE Transactions on Geoscience and Remote Sensing,2003,41(6): 1180.
[6] Santer Richard P,Six C,Buis J P. Optical Remote Sensing of the Atmosphere and Clouds III. SPIE,2003,4891: 524.
[7] Barry P S,Shepanski J,Segal C. Imaging Spectrometry Ⅶ. Proceedings of SPIE, 2001, 4480: 231.
[8] PANG Wei-wei,ZHENG Xiao-bing,LU Jun-hua,et al(庞伟伟,郑小兵,陆俊桦,等). Journal of Atmospheric and Environmental Optics(大气与环境光学学报),2015,10(6): 472.
[9] HE Xing-wei,HU Xiu-qing,HE Ling-li,et al(何兴伟,胡秀清,何灵莉,等). Acta Optica Sinica(光学学报),2022,42(6): 0628003.
[10] Zhu Sifeng,Li Zhengqiang,Hu Xiuqing,et al. International Journal of Remote Sensing,2022,43(5):1684.
[11] Wu S, Wang Y, Wang Z, et al. New Phytol.,2022,234(2): 392.
[12] Gong Suhua, Bai Xiaoyong,Luo Guangjie,et al. Global and Planetary Change,2023,228: 104203.
[13] Pang Guojin, Chen Deliang,Wang Xuejia,et al. Science of the Total Environment,2022,804: 150100.
[14] Xiao Biqin,Bai Xiaoyong,Zhao Cuiwei,et al. Journal of Hydrology,2023,617: 128968.
[15] DU Wen-bin(杜文彬). Disaster Medicine and Rescue(灾害医学与救援),2018, 7(1): 40.
[16] Strugnell N C,Lucht W,Hyman A H,et al. IEEE International Geoscience and Remote Sensing. Symposium Proceedings (Cat. No. 98CH36174),1998,2: 595.
[17] BAI Jing,PENG Kuan(白 璟,彭 宽). Technology Innovation and Application(科技创新与应用),2021,329(1): 152.
[18] YAN Guang-jian,JIANG Hai-lan,RUN Kai,et al(阎广建,姜海兰,闰 凯,等). National Remote Sensing Bulletin(遥感学报),2021,25(1): 83.
[19] Zeng Q,Cheng J,Guo M A,et al. Remote Sensing,2023,15(12): 2955.
[20] ZHANG Quan,LI Xin,WEI Wei,et al(张 权,李 新,韦 玮,等). Journal of Atmospheric and Environmental Optics(大气与环境光学学报),2023,18(3): 235.
[21] Lucht W,Lewis P. International Journal of Remote Sensing,2000,21(1): 81.
[22] Friedl M A,Muchoney D,McIver D, et al. Geophysical Research Letters,2000,27(7):977.
[23] Luo W,Li R,Shen F,et al. Remote Sensing,2023,15(2): 386.
[24] ZHAN Yan-ting,WU Ke,XU Hong-gen,et al(占燕婷,吴 柯,徐宏根,等). Remote Sensing Information(遥感信息),2021,36(6): 140.
[25] QIN Fang,LI Deng-xuan,DING Huang,et al(秦 放,李登宣,丁 煌,等). Acta Energiae Solaris Sinica(太阳能学报),2022,43(9): 8.