波长比和近红外光谱的番茄品质检测方法

黄玉萍¹, Renfu Lu², 戚超³, 陈坤杰³*

1. 南京林业大学机械电子工程学院，江苏 南京 210037
2. United States Department of Agriculture Agricultural Research Service (USDA/ARS)，Michigan State University, East Lansing, MI 48824, USA
3. 南京农业大学工学院，江苏 南京 210031

摘要 番茄的可溶性固形物（SSC）、pH 值和坚实度（Firmness）是决定番茄的口感及收获后品质的主要因素。提出一种基于波长比和近红外光谱的番茄 SSC、pH 和坚实度检测方法。首先用 Vis/SWNIR 便携式光谱仪（波长：400~1 100 nm）和中波近红外便携式光谱仪（波长：900~1 683 nm）在相互作用模式下，对 6 个不同成熟度的番茄进行光谱采集。对所采集的光谱用波长比法和波长比+自动缩放法进行预处理，分别建立番茄 SSC, pH 和坚实度的预测模型。比较单一自动缩放、单一波长比、波长比+自动缩放及不做预处理四种方法的预测结果。结果显示，波长比法结合自动缩放预处理可有效提高可见/短波近红外光谱对 SSC, pH 和坚实度的预测精度，波长比+自动缩放法可提高中波近红外光谱对 SSC 的预测效果。这说明波长比法在优化和处理番茄光谱信息方面具有一定的潜力。

关键词 番茄；波长比；可溶性固形物；pH；坚实度

中图分类号：TS207.3 文献标识码：A DOI: 10.3964/j.issn.1000-0593(2018)08-2362-07

引言

番茄富含多种对人体有益的营养成分，如糖、有机酸、维他命 C 等，已成全球第二大消费果蔬产品。番茄的可溶性固形物含量（SSC）和 pH 值直接影响番茄的口感，坚实度则是评价番茄收获后品质的重要指标之一。目前国内外普遍采用折射仪和 pH 计来测定番茄 SSC 和 pH 值，用 Magness-Taylor 来测定番茄的坚实度[2,3]，但这些方法均需破坏样品，且比较简单，不够简便。近红外光谱因其快速、无样品种稀备样优点近年来被广泛用于食品品质的无损检测[4,5]。其中，在应用近红外光谱检测番茄品质属性方面，He 等[6]曾经基于可见/近红外漫反射光谱，建立了番茄 SSC, pH 和坚实度的主成分回归和偏最小二乘（PLS）回归模型，获得最优相关系数。进一步，分别为 0.98 和 0.83 和 0.81。Shao 等[7]也做了相似的研究，其 PLS 模型相关系数比 He 等微有提高，分别为 0.98, 0.95 和 0.81。而 Clément 等[8]在应用波长范围 400~1 500 nm 的可见/近红外漫反射光谱建立番茄 SSC 和 pH 的 PLS 回归模型时，最优相关系数有 0.40 和 0.64, Xie 等[9]在 800~2 400 nm 波长区间，采集番茄汁的透射光谱，建立了番茄汁中 SSC 和 pH 的 PLS 回归模型，获得最优相关系数为 0.92 和 0.90。然而，这些研究大部分研究集中在单一波长或透射模式下的可见/近红外光谱区域，所选番茄样本的成熟度范围有限，未考虑用近红外光谱法对番茄品质的检测结果的影响。本工作对包含 6 个不同成熟度的番茄，采用近红外光谱的方法实现在相互作用模式下的光谱采集，再运用波长比法对所采集光谱进行预处理，提出一种基于波长比和相互作用模式的番茄品质近红外光谱检测方法。

1 实验部分

1.1 材料

实验所用的 600 个不同成熟度的番茄，均手工采自美国密歇根州立大学的园艺研究与教学中心（Holt, Michigan, USA），番茄洗净擦拭后，根据美国农业部制定的不同番茄成熟期表面颜色标准[10]，通过视觉观察将番茄分为六个等
级（green，breaker，turning，pink，light red and red），每一个成熟度等级包括 100 个番茄样本。

1.2 可见/近红外光谱采集

可见/近红外光谱采集系统如图 1 所示。主要包括可见/短波近红外便携式光谱仪（Model LOE USB，tec5USA Inc.，Plainview，NY，USA）、中波近红外便携式光谱仪（Model NIR 512L-1.7TI，Control Development Inc.，South Bend，IN，USA）、环形探头和计算机等。环形探头有一个直径为 25 mm 的环形光源，检测光纤位于探头中心，通过准直镜使检测区域控制在 11 mm 直径的圆周范围内。在光源与检测光纤之间用黑色橡胶圈将光源与检测光纤隔离，避免光源发出的光直接进入检测光纤。在光源外围装上 5 mm 厚的环形海绵以避免减少环境中的杂散光影响。

在进行光谱采集时，将探头直接贴合于番茄样本和参比样本。参比样本选择直径 80 mm 的白色圆柱特氟龙（Teflon）。环形光源由 200 W 的卤素灯通过导向光纤传送，可见/短波近红外便携式光谱仪曝光时间设置为 400 ms，中波近红外便携式光谱仪曝光时间设置为 8 s。对番茄各处的两个相对面进行光谱采集，每个样本采集 2 次，采用其平均光谱用于后续数据分析。

1.3 番茄质量参数的测量

在光谱采集后，用质构分析仪（Model TA. XT2i，Stable Micro System，Inc.，Surrey，UK）对每一个番茄样本进行准确的力-位移曲线。压缩采用直径为 20 mm 的圆柱形圆周范围。压缩采用直径为 80 mm 的白色圆柱特氟龙。压缩压缩采用直径为 25 mm 的环形光源。压缩压缩采用直径为 25 mm 的环形光源。压缩采用直径为 80 mm 的白色圆柱特氟龙。压缩压缩采用直径为 25 mm 的环形光源。压缩采
量除以该列的标准偏差而实现数据缩放的数据预处理技术，是一种校正不同变量的有效方法。通过自动缩放处理，可以使得用于信号与其他变量的信号具有相等的基础。数据的自动缩放预处理，采用PLS toolbox8.2软件(Eigenvector Research, Inc., Wenatchee, WA, USA)中的光谱预处理自动缩放功能来实现。

1.4.3 建模

600个不同成熟度的番茄被随机分成含有 450 个样本的校正集和含有 150 个样本的验证集。对校正集光谱数据采用波长比、自动缩放波长比 + 自动缩放以及不处理四种方法，分别建立 SSC, pH 和坚实度的偏最小二乘回归模型。运用威尼斯百叶窗交叉验证法，最小交叉验证均方根误差 (RMSECV) 来确定最佳潜在变量数量。最后用验证集样本数据对模型进行验证和比较。

2 结果与讨论

2.1 番茄质量参数的测量结果分析

表 1 为 600 个番茄样品的 SSC, pH 和坚实度测量结果的统计分析。相比较于其他研究[15-16]，本研究所选择样本的 SSC 和 pH 的范围更广，分别为 3.5％～7.1％和 3.76～4.81，但坚实度范围相对较窄，为 5.03～59.51(N)。这可能是主要是由于番茄品种不同的原因而造成。总体而言，SSC 和 pH 分布都比较均匀，变异系数分别为 12.77％和 4.35％，坚实度 (Compression Maximum Force) 分布较大，变异系数达到 52.77％。

表 1 600 个番茄的 SSC, pH 和坚实度统计数据

<table>
<thead>
<tr>
<th>Quality Parameters</th>
<th>Units</th>
<th>Mean</th>
<th>SD</th>
<th>Max</th>
<th>Min</th>
<th>CV/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSC</td>
<td>Brix</td>
<td>5.01</td>
<td>0.64</td>
<td>7.10</td>
<td>3.50</td>
<td>12.77</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>4.14</td>
<td>0.18</td>
<td>4.81</td>
<td>3.76</td>
<td>4.35</td>
</tr>
<tr>
<td>Compression maximum force</td>
<td></td>
<td>18.42</td>
<td>9.72</td>
<td>59.51</td>
<td>5.03</td>
<td>52.77</td>
</tr>
</tbody>
</table>

SD = standard deviation; CV = coefficient of variation

2.2 光谱相关性分析

6 个不同成熟度番茄的平均光谱如图 2 所示。不同成熟度番茄的中波近红外光谱图基本没有变化，而不同成熟度番茄的可见/短波近红外光谱图差异明显，这可能是因为在中波近红外波段，水分的干扰比较强所致。另外，从图 2(a) 可知，在 550 nm 以及 675 nm 附近，不同成熟度番茄的光谱差异最为显著，这是因为花青素和叶绿素含量会随着番茄成熟而发生变化[17]，随着番茄的成熟，颜色由绿变色，花青素增多，而叶绿素随之减少。

图 2 番茄 6 个不同成熟度的平均相对光谱

(a) 可见/短波近红外光谱 (400～1 100 nm); (b) 中波近红外光谱 (900～1 683 nm)

Fig. 2 Mean relative interactance spectra of tomatoes at the six maturity stages obtained with the visible and shortwave near-infrared spectrometer for 400～1 100 nm (a) and the near-infrared (NIR) spectrometer for 900～1 683 nm (b)

图 3(a)显示了番茄 SSC, pH 和坚实度与可见/短波近红外光谱间的波长相关性。在波长 400～600 nm 区间，SSC 和 pH 与波长均呈现负相关，坚实度则呈正相关，且在 560 nm 左右，SSC 和 pH 与波长均呈现负相关，且在 560 nm 左右，SSC 和 pH 与波长都呈现负相关。坚实度呈正相关，且在 560 nm 左右，SSC 和 pH 均可获得最高的正相关值，分别为 0.66 和 0.65。坚实度可达最高为负相关值 -0.68。对于中波近红外光谱，番茄的 SSC 和 pH 值与波长均呈正相关，坚实度在绝大部分波段处呈现负相关，但三个品质参数与中波近红外波长的相关系数均不高，尤其是在 1 340 nm 之后，这可能是由于番茄中水分的强吸收导致的低信噪比造成的结果。

2.3 波长比光谱分析

图 4(a)显示了以 673 nm 处的相对反射率为基数获得的 600 个番茄样本的波长比光谱，与其对应的原始光谱如图 4(b) 所示。通过比较可知，波长比预处理后光谱变得更平滑，且将 500～600 和 700～1 100 nm 波段各样本间的特征差异显著放大；而在存在一定噪声的 400～500 nm 开始阶段，经过波长比预处理后，波段的特征被减弱、噪声影响明显减少。

图 4(b1)则显示了以 1 209 nm 处相对反射率为基数获得
的600个测试番茄波长比光谱，图形整体特征与原始光谱图(b2)相比没有多大变化，但在波长比处理后，900～1150 nm处的信号被放大了10～18倍，显著增加了信号强度。但在1150 nm以后，由于番茄中高水分影响，信噪比降低。再经过波长比预处理，1150 nm之后的信号特征更加弱化，相应地，噪声影响也显著减少。

由于波长比预处理是以每个波长点为基数，将获得的光谱数据在矩阵列方向合并形成新的光谱，增加了光谱的信息量，放大了有用光谱信号并减少噪声影响，因此，总体而言，波长比方法能够有效提高不同样本间信号差异，有利于样本识别。

图3 番茄SSC，pH和坚实度(CF)与可见/短波近红外光谱(a)和中波近红外光谱(b)的波长相关性曲线
Fig. 3 Correlation curves for the SSC, pH and firmness (compression force or CF) of tomato fruit with individual wavelengths for the visible and shortwave near-infrared region of 400~1 100 nm (a) and near-infrared region of 900~1 683 nm (b)

图4 600个番茄样本的波长比光谱(673和1209 nm)(a1和b1)与相对可见/近红外光谱(a2和b2)
Fig. 4 Wavelength ratio spectra calculated at 673 and 1 209 nm (a1 and b1) and the original relative Vis/NIR and NIR spectra (a2 and b2) for 600 tomato samples

分别采用原始光谱、自动缩放、波长比和波长比+自动缩放处理后的光谱数据建模。对番茄样本的SSC，pH和坚实度(CF)进行预测，结果如表2所示。由表可知，不管是对可见/短波近红外(Vis/SWNIR)光谱还是中波近红外(NIR)光谱，波长比和自动缩放的组合处理对SSC的预测均可获得最优结果，相关系数分别为0.779和0.818，见图5(a)和图6(a)。在可见/短波近红外波段，单一自动缩放和波长比预处理所得的预测结果比原始光谱略差，而两种预处理的组合，
可以将 PLS 模型对 SSC 的预测能力提高 13.2%。在中波近红外波段，单一自动缩放预处理无法明显提高模型预测能力，单一波长比预处理可将模型预测能力提高 4.1%，而两种预处理的组合可进一步将模型预测的准确性提高 9.6%；但对于中波近红外光谱，两个预处理的组合反而降低了模型预测能力。

在利用 PLS 模型对 pH 进行预测时，与原始光谱相比，在短波和中波近红外波段，经过单一自动缩放和波长比预处理后，模型的预测能力均可获得提高。对于可见/短波近红外光谱，两个预处理的组合可进一步将预测相关系数提高到 0.917。如图 5(c)所示，中波近红外波段区域，不管是单一预处理还是组合预处理均无法提高 PLS 模型对坚实度的预测能力。

表 2 不同方法预处理两个光谱仪采集的数据对番茄质量属性的 PLS 预测效果

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Instrument</th>
<th>Treatment</th>
<th>(r_c)</th>
<th>(r_f)</th>
<th>RMSEC</th>
<th>RMSEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSC</td>
<td>Vis/SWNIR</td>
<td>No</td>
<td>0.776</td>
<td>0.688</td>
<td>0.41</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autoscale</td>
<td>0.773</td>
<td>0.672</td>
<td>0.41</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WR</td>
<td>0.744</td>
<td>0.684</td>
<td>0.43</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WR+autoscale</td>
<td>0.888</td>
<td>0.779</td>
<td>0.30</td>
<td>0.42</td>
</tr>
<tr>
<td>NIR</td>
<td>Vis/SWNIR</td>
<td>No</td>
<td>0.774</td>
<td>0.753</td>
<td>0.41</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autoscale</td>
<td>0.869</td>
<td>0.756</td>
<td>0.32</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WR</td>
<td>0.775</td>
<td>0.784</td>
<td>0.41</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WR+autoscale</td>
<td>0.828</td>
<td>0.818</td>
<td>0.36</td>
<td>0.37</td>
</tr>
<tr>
<td>(\text{pH})</td>
<td>Vis/SWNIR</td>
<td>No</td>
<td>0.722</td>
<td>0.726</td>
<td>0.12</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autoscale</td>
<td>0.764</td>
<td>0.770</td>
<td>0.11</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WR</td>
<td>0.696</td>
<td>0.745</td>
<td>0.13</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WR+autoscale</td>
<td>0.825</td>
<td>0.796</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td>NIR</td>
<td>Vis/SWNIR</td>
<td>No</td>
<td>0.702</td>
<td>0.704</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autoscale</td>
<td>0.791</td>
<td>0.739</td>
<td>0.11</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WR</td>
<td>0.751</td>
<td>0.712</td>
<td>0.12</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WR+autoscale</td>
<td>0.731</td>
<td>0.696</td>
<td>0.12</td>
<td>0.13</td>
</tr>
<tr>
<td>Compression</td>
<td>Vis/SWNIR</td>
<td>No</td>
<td>0.926</td>
<td>0.907</td>
<td>3.73</td>
<td>4.00</td>
</tr>
<tr>
<td>Maximum Force</td>
<td></td>
<td>Autoscale</td>
<td>0.928</td>
<td>0.910</td>
<td>3.66</td>
<td>3.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WR</td>
<td>0.898</td>
<td>0.868</td>
<td>4.33</td>
<td>4.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WR+autoscale</td>
<td>0.942</td>
<td>0.917</td>
<td>3.31</td>
<td>3.79</td>
</tr>
<tr>
<td>(\text{pH})</td>
<td>Vis/SWNIR</td>
<td>No</td>
<td>0.902</td>
<td>0.876</td>
<td>4.26</td>
<td>4.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Autoscale</td>
<td>0.916</td>
<td>0.843</td>
<td>3.94</td>
<td>5.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WR</td>
<td>0.829</td>
<td>0.803</td>
<td>5.50</td>
<td>5.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WR+autoscale</td>
<td>0.894</td>
<td>0.824</td>
<td>4.41</td>
<td>4.55</td>
</tr>
</tbody>
</table>

图 5 可见/短波近红外光谱仪测得的 150 个番茄验证集样本的最佳 SSC、pH 和坚实度预测值与实测值相关图

Fig. 5 SSC, pH and firmness (compression maximum force) predictions by partial least squares models with the best preprocessing method, based on the Vis/SWNIR spectra of 150 validation tomato samples.
与其他研究的结果相比，对 SSC 和 pH 预测误差基本相近，在 0.45 和 0.09 左右。说明本研究所建立模型在预测性能上与以往研究类似。至于本研究模型对 SSC 和 pH 值预测的相关系数与以往研究有一定差异，可能是由于光谱采集的方式和预处理方法的不同、波长范围的差异以及番茄的产地、品种的不同所造成的。由表 1 可知，番茄的 SSC 和 pH 分布比较窄，说明番茄在不同成熟期的 SSC 和 pH 变化不大，是影响模型预测精度的因素之一。与 Clément [11] 研究报道时一致，对番茄坚实度预测中，以往其他研究 [9–10] 的最佳坚实度预测相关系数仅可达到 0.81 左右，而本研究中通过波长比与自动缩放组合预处理后，所开发模型的最优预测相关系数可达到 0.917，模型预测能力提高了 13.2%。说明波长比与自动缩放组合预处理的效果很明显。

3 结论

对于可见/短波近红外光谱，波长比结合自动缩放预处理，可明显提高可见/短波近红外光谱对番茄质量参数（SSC、pH 和坚实度）的预测能力。但对于中波近红外光谱，波长比与自动缩放组合预处理仅对 SSC 预测有明显提高，单一波长比预处理可提高 pH 预测，而对坚实度预测，所有预处理均无法提高模型预测能力。波长比预处理在优化番茄光谱与其品质参数的相关性中具有一定潜力。此外，利用可见/短波近红外光谱所建立的 PLS 模型对番茄 pH 和坚实度的预测具有更好的预测能力，而利用中波近红外光谱所建立的 PLS 模型对番茄的 SSC 预测效果更好。

References

Measurement of Tomato Quality Attributes Based on Wavelength Ratio and Near-Infrared Spectroscopy

HUANG Yu-ping¹, Renfu Lu², QI Chao³, CHEN Kun-jie⁴∗
1. College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
2. United States Department of Agriculture Agricultural Research Service (USDA/ARS), Michigan State University, East Lansing, MI 48824, USA
3. College of Engineering, Nanjing Agricultural University, Nanjing 210031, China

Abstract The soluble solids content (SSC), pH and firmness (Firmness) of tomato are the key factors that determine the taste and post harvest quality of tomato. A new method for detecting tomato SSC, pH and firmness based on wavelength ratio and near infrared spectroscopy is proposed in this paper. The spectra of six hundreds tomato samples with different maturity were collected with the portable Vis/NIR spectrometer (wavelength: 400~1 100 nm) and the portable near infrared spectrometer (wavelength: 900~1 683 nm) in the interaction mode, respectively. After these spectra were pretreated with the wavelength ratio method are as follows: automatic scaling one and the wavelength ratio + automatic scaling one, the prediction models for SSC, pH and firmness of tomato were developed, respectively, and then the prediction results of the four methods are as follows automatic scaling, wavelength ratio, wavelength ratio + automatic scaling and no preprocessing were compared and analyzed. The experimental results showed that the prediction accuracy of the visible/near infrared spectra for SSC, pH and firmness could be visibly improved by the wavelength ratio combined with the automatic scaling pretreatment, with $r_e=0.779$, 0.796 and 0.917, respectively. The wavelength ratio combined with the automatic scaling also could enhance the prediction ability of the Near infrared spectroscopy for SSC with $r_e=0.818$, which suggests that the proposed wavelength ratio method in this paper had considerable potential in optimizing and processing the spectral information of tomato.

Keywords Tomato; Soluble solid content; pH; Firmness; Wavelength ratio

(Received Sep. 15, 2017; accepted Jan. 8, 2018)

* Corresponding author