Ce掺杂Si纳米线的制备及其蓝光发射特性

范志东 1, 刘 绰 2, 李 旭 3, 马 雷 2*, 彭英才 2

1. 承德石油高等专科学校数理部，河北 承德 067000
2. 河北大学电子信息工程学院，河北 保定 071002
3. 河北大学物理科学与技术学院，河北 保定 071002

摘 要 以抛光和“金字塔”织构表面的单晶 Si(100) 为衬底，分别以 Au 和 Au-Al 为金属催化剂，在温度为 1 100 °C、N2 气流量为 1 500 scm、生长时间为 15～60 min 等工艺条件下，制备了直径约为 50～200 nm、长度为数微米至数十微米和不同分布的 Si 纳米线。然后，利用 CeO2 粉末为掺杂剂，在温度为 1 100～1 200 °C、N2 流量为 1 000 scm、掺杂时间为 30～60 min 等工艺条件下对 Si 纳米线进行 Ce 掺杂。实验研究了不同 Si 纳米线长度、密度和分布等对 Ce3+ 蓝光发射的影响。室温下利用 Hitachi F-4600 型荧光分光光度计对样品的激发光谱和发射光谱进行了测试和分析，同时利用 FL500 全功能型荧光光谱仪对样品的荧光量子效率进行了测试。结果表明，在 Si 纳米线生长时间为 30 min、织构表面和密度相对较低时以及最佳激发光波长为 405 nm 时，样品发射光波长为 405 nm (5d→f F2,3) 荧光强度较大，实现了蓝的蓝光发射，其荧光量子效率达到了 65.57%。通过光谱功率分布和 CIE-1931 标准公式进行计算，Ce 掺杂 Si 纳米线样品的色坐标为 (0.16, 0.03)；发光强度大，量子效率高使其在照明、显示等领域有着潜在的应用价值，同时对 Si 纳米线在发光领域的研究和应用具有一定的参考价值。

关键词 Si 纳米线；Ce 掺杂；光致发光

引 言

近年，Ce掺杂的 Gd-Al-Ga-O 纳米材料因其具有光产量高、寿命短、分辨率高和密度大等特点作为固态闪烁体用来检测γ 射线而受到人们的广泛关注[1-13]。同时，Ce 掺杂的其他材料也得到了研究。Shi 等[1]基于溶胶-凝胶法制备了 Li-Ce 共掺杂的 ZnO 材料，提高了其蓝光发射特性。Li 加入使 ZnO 向 Ce3+ 产生能量转移提高了样品的发光强度，且 Li 的浓度为 0.2% 时，发光强度值达到了最大。Gnanamoorthi 等[5]利用微波辐射法合成了 Ce 掺杂的 ZrO2 纳米颗粒，研究指出随着 Ce 掺杂浓度由 0～15% 变化时，ZrO2 纳米颗粒平均尺寸由 44 nm 减小到 32 nm。Boukerika 等[6]通过溶胶-凝胶法制备了 Ce 掺杂的 La2O3:Ce3+ 粉末，并研究了不同温度和不同掺杂浓度等对 LaAG + Ce3+ 的结构和光致发光（photoluminescence，PL）特性的影响。室温下，波长为 450～700 nm 范围，测试到了较强的黄-绿发射带，该发射由 Ce3+ 的 5d→f (F2,3→F2,3) 传递所引起。张红英等[7]采用电化学方法在多孔硅中进行了 Ce 掺杂，样品在波长为 480 nm 光激发下，观察到了 572 和 650 nm 的 PL 激发峰。

本工作制备了不同长度、密度和分布的 Si 纳米线作为基质进行了 Ce 掺杂。样品发光强度大，荧光量子效率高使其在照明、显示以及其他荧光领域具有潜在的实用价值，同时对 Ce 掺杂 Si 纳米线在发光领域的研究具有一定的参考价值。

1 实验部分

（1）实验以抛光和“金字塔”织构表面的单晶 Si (100) 为衬底，用丙酮和甲醇混合液超声清洗 5 min；再用蒸馏水和去离子水混合溶液（NH4OH + H2O2 + H2O = 1:2:5）超声清洗 5 min。进而用稀释的 HF (HF + H2O = 1:10) 超声清洗；最后
后，用去离子水清洗，干燥箱内烘干备用。

（2）利用 DM-300B 硅膜机分别蒸发高纯 Al 和 Au 丝，在 Si 磨片表面沉积厚度为 5～15 nm 的 Au 或 Al-Au 金属催化剂，然后，在温度为 1 100 °C，1 500 scem 的 N2 气下和生长时间为 15～60 min 等工艺条件下生长 Si 纳米线。

（3）利用 CeO2 粉末对不同长度、分布和密度的 Si 纳米线以及 Si(100)衬底进行 Ce 掺杂。室温下利用 Hitachi F-4600 型荧光分光光度计测定了样品的激发光谱和发射光谱。

2 结果与讨论

在初步确定了 Ce 掺杂 Si 纳米线的发射光谱后，对 PL 谱峰 405 nm 进行了激发光谱的测试，结果如图 1 所示。

![图 1 Ce 掺杂 Si 纳米线的激发谱 (监测 405 nm)

Fig. 1 The excitation spectrum of Ce-doped silicon nanowires with photoluminescence peak at 405 nm](image)

可以看出，Ce 掺杂 Si 纳米线的激发谱是由位于 328 nm 激发峰和 306 nm 的肩峰组成的宽谱。Ce3+ 的 4F σ 态受品格的影响比较小，而且受到外壳电子云的屏蔽作用，是两个分立的能级，而 5d 轨道受品格的影响较大形成连续的能带，导致 Ce3+ 的光吸收谱和发射谱均为宽谱[4]。采用波长为 328 nm 的紫外光作为测试样品的激发光，室温下对样品进行 PL 特性测试。

2.1 Si 纳米线对 Ce3+ 蓝光发射的影响

掺杂工艺条件对样品的 PL 特性有着重要的影响，同时 Si 纳米线的长度、密度、分布等对样品的发光同样起着重要的作用。

2.1.1 Si 纳米线长度

Si 纳米线的长度随着生长时间的延长而增加。实验采用生长时间为 15、30 和 60 min 的 Si 纳米线为 Ce 掺杂基质，在掺杂温度为 1 100 °C，N2 气流量为 1 000 scem，掺杂时间为 30 min 进行 Si 纳米线的 Ce 掺杂。室温下测试了其 PL 特性，结果如图 2 所示。图中插图为 Si 纳米线生长时间分别为 30 和 60 min 的 SEM 像。

结果发现，随着 Si 纳米线生长时间延长即随着 Si 纳米线长度的增加，样品的发光强度先增强后降低。分析认为，随着 Si 纳米线的长度增加提高了 CeO2 和纳米线的接触面积，增加了 Si 纳米线中 Ce3+ 的浓度，因此发光强度增加；而当 Si 纳米线生长时间为 60 min 时，样品的光发射强度骤然下降。这是因为随着纳米线长度的增加，纳米线交错无序性增加，线与线之间的空隙减小，在一定程度上阻碍了 CeO2 和纳米线的充分接触，进而降低了 Ce3+ 进入到 Si 纳米线中的数量，减小了 Ce3+ 的浓度，故发光强度减弱。

![图 2 不同 Si 纳米线生长时间对 Ce 掺杂 Si 纳米线发射光谱的影响

Fig. 2 The emission spectrum of Ce-doped samples with different Si nanowires growth times](image)

2.1.2 Si 纳米线密度

Si 纳米线的分布、直径大小、密度等对稀土离子的光发射有着重要的影响。实验以不同金属催化剂制备了不同密度的 Si 纳米线，以 Au 为金属催化剂制备的 Si 纳米线密度达到了 1015 cm−2，而以 Au-Al 为金属催化剂制备的 Si 纳米线密度达到了 1017 cm−2。在此，以两种不同密度的 Si 纳米线为基质，掺杂温度为 1 100 °C，N2 气流量为 1 000 scem，掺杂时间为 30 min 进行 Si 纳米线的 Ce 掺杂。室温下对样品的 PL 特性进行了测试，结果如图 3 所示。

![图 3 不同密度对 Ce 掺杂 Si 纳米线发射光谱的影响

Fig. 3 The emission spectrum of Ce-doped samples with different Si nanowires density](image)

由图 3 可知，以 Au 为金属催化剂制备的 Si 纳米线在 Ce 掺杂后有着更高的发光强度。分析认为，Si 纳米线的密度较大时，纳米线交错无序在一定程度上会阻碍 CeO2 和纳米线的接触，减小了 Si 纳米线中 Ce3+ 数量，故发光强度降低。

2.1.3 Si 纳米线分布

不同的衬底表面决定了所制备的纳米线的分布。实验分别以抛光表面和具有“金字塔”结构表面的 p-Si(100)作为
衬底生长了 Si 纳米线作为 Ce 掺杂的基质，在掺杂温度为 1100 °C，N₂ 气流量为 1000 sccm，掺杂时间为 30 min 进行 Si 纳米线的 Ce 掺杂。室温下测试其 PL 特性，结果如图 4 所示。

![图 4 不同衬底表面 Si 纳米线的发射谱影响](image)

图 4 不同衬底表面 Si 纳米线的发射谱影响
Fig. 4 The emission spectrum of Ce-doped samples with different Si nanowires distribution

结果表明，两种衬底表面样品的光谱形没有变化，只有光发射强度上的差异。说明 Si 纳米线的直径分布没有使 Ce³⁺ 能级产生变化。Ce 掺杂“金字塔”结构表面的样品具有较高的光发射强度。这是因为结构表面上生长的 Si 纳米线分布范围较大且交错不平整，具有更大的表面积，所以制备的 Si 纳米线相对数量较大且参差不齐更有利于 CeO₂ 粉末的充分接触，从而使掺入 Si 纳米线中的 Ce³⁺ 数量也较多，提高了 Ce³⁺ 的浓度。故光发射强度大。

2.2 体 Si 和 Si 纳米线 Ce 掺杂的对比

通过上述工艺参数的对比，选取生长时间为 30 min，Au 为金属催化剂和结构表面为衬底生长的 Si 纳米线为掺杂基质，在掺杂温度为 1100 °C，时间为 60 min 和 N₂ 流量为 1000 sccm 等条件下对体 Si 和 Si 纳米线进行了 Ce 掺杂。室温下对样品进行了 PL 特性测试，结果如图 5 所示。

![图 5 Si 被 Si 纳米线的 PL 谱](image)

图 5 Si 被 Si 纳米线的 PL 谱
Fig. 5 Si and Si nanowires PL spectrum

显而易见，体 Si 衬底在 405 nm 仅有极其微弱的 PL 峰，而 Ce 掺杂 Si 纳米线则出现了较强的 PL 谱峰。这是因为，Si 纳米线具有比表面积大、表面活性高等不同于体材料的特点，增加了 Ce³⁺ 进入到 Si 纳米线中的数量，从而提高了 Ce³⁺ 浓度，进而呈现了较强的 PL 特性。

同时，利用 FLS920 全功能型荧光光谱仪对该样品的荧光量子效率进行了测试，其结果为 65.57%。

2.3 CIE 色度图

荧光粉的色坐标是判定材料实际应用前景的重要标准之一。通过光谱功率分布和 CIE-1931 表准公式进行计算，Ce 掺杂 Si 纳米线样品的色坐标为 (0.16, 0.03)，处于蓝色区域，结果如图 6 所示。

![图 6 Ce 掺杂 Si 纳米线的色坐标](image)

图 6 Ce 掺杂 Si 纳米线的色坐标
Fig. 6 The color coordinates of Ce-doped Si nanowires

2.4 Ce³⁺ 能级分析

Ce 原子的电子构型为 1s² 2s² 2p⁶ 3s² 3p⁶ 3d⁰ 4s² 4p⁰ 4f⁰ 5s² 5p² 5d² 6s²，Ce³⁺ 的形成是失去 6s 电子的 2 个电子和 4f 壳层的 1 个电子，其能级简图如图 7 所示。Ce³⁺ 基态能级为 F₁/₂ 和 F₃/₂ 激发态是 5d。4f 混合能级，而且受到外壳电子云的屏蔽作用，是两个分立的能级，而 5d 轨道受能级的影响较大形成连续的能带，导致 Ce³⁺ 的吸收谱和发射谱均为宽谱。样品的发射光谱是峰值位于 405 nm 的对称单峰宽带，对应于 Ce³⁺ 的 5d→F₁/₂ 能级跃迁。

![图 7 Ce³⁺ 能级简图](image)

图 7 Ce³⁺ 能级简图
Fig. 7 Energy level of Ce³⁺
3 结 论

实验对比了不同 Si 纳米线长度、密度、分布对 Ce 擦杂 Si 纳米线 PL 特性的影响，并与体 Si 的 Ce 擦杂进行了对比。结果表明，在生长时间为 30 min, Au 为金属催化剂和织构表面为衬底生长的 Si 纳米线为掺杂基质，Ce 擦杂温度为 1200 °C。最佳激发波长为 328 nm 时，样品最强荧光波长为 405 nm (5d→2F_{5/2})，实现了强的蓝光发射，其荧光量子效率达到了 65.57%。另外，Ce 掺杂 Si 纳米线的色坐标为 (0.16, 0.03) 处于蓝色光区域，该方法制备的样品发光强度大，荧光量子效率高使得其在照明、显示等领域有着潜在的应用价值。

References

The Preparation and Blue Light Emission Characteristic of Ce-Doped Si Nanowires

FAN Zhi-dong1, LIU Chuo2, LI Xu3, MA Lei1*, PENG Ying-cai2
1. Department of Mathematics and Physics, Chengde Petroleum College, Chengde 067000, China
2. College of Electronic and Information Engineering, Hebei University, Baoding 071002, China
3. College of Physics Science & Technology, Hebei University, Baoding 071002, China

Abstract Si nanowires were prepared from the Si (100) single with polishing and “pyramid” texture surface. The process conditions were as follows: the growth temperature was 1100 °C, N2 gas flow rate 1500 sccm, growth time 15–60 min, and Au and Au-Al were used metal catalyst, respectively. The diameters of the formed Si nanowires are 50–200 nm and the length were from several micrometers to several tens of micrometers. Then, Ce-doped Si nanowires were prepared under the temperature of 1100–1200 °C, 1000 sccm of N2 flow rate, 30–60 min of doping time and CeO2 powder as doping agent. The influences of the different length, density and distribution of Si nanowires on the luminescence of Ce3+ were experimentally investigated. The photoluminescence properties and fluorescence quantum efficiency were test ed and analyzed by the Hitachi F-4600 fluorescence spectrophotometer and the FLS-920 full functional fluorescence spectrometer under room temperature. The results showed that the Ce-doped Si nanowires had a strongly blue luminescent with an emission peak position at 405 nm (5d→2F_{5/2}) and the full width at half maximum was 36.7 nm when the grow time of Si nanowires was 30 min, the surface was “pyramid” texture with lower density and the optimized excitation wavelength was 328 nm. Compared with the silicon substrate, the Ce-doped Si nanowires appeared strong blue light emission. The fluorescence quantum efficiency reached 65.57%. The color coordinates of Ce-doped Si nanowires was (0.16, 0.17) based on the distribution of emission spectral and CIE-1931 standard formula, Ce-doped Si nanowires have potential applications in the areas of lighting and display because of its strong luminous intensity and relatively high fluorescence quantum efficiency. At the same time this paper has a certain referential value in the field of research and application of Si nanowires.

Keywords Si nanowires; Ce doped; Photoluminescence

* Corresponding author (Received Jun. 1, 2016; accepted Dec. 22, 2016)