荧光法研究琥珀酸曲格列汀与牛血清白蛋白的相互作用及分析应用

龚爱琴1,2，金开琴1，朱霞石2

摘 要 琥珀酸曲格列汀（QGLT）是一种新型降糖药。基于其能够靶向降血糖白蛋白（BSA）的荧光，用荧光法研究了两者相互作用。对影响荧光猝灭的因素如溶液酸度、物质性质等进行了优化。猝灭机理探讨发现QGLT主要通过静电间离降低BSA的荧光，并推导出两者的结合位点数为n=1，结合常数分别为4.529×10^4 L·mol⁻¹（298 k）和2.958×10^4 L·mol⁻¹（303 K）。热力学参数测定结果显示吉布斯自由能变、焓变和熵变均为负值，表明QGLT和BSA的结合主要是通过疏水及疏水相互作用结合的。研究中发现Lineweaver-Burk方程具有良好的线性关系，线性方程为：\(y = \frac{-x}{A} + B \)，\(r_{0.9989}，精度为0.13 μg·mL⁻¹(S/N=3)。线性范围为0.5~10.0 μg·mL⁻¹。回收率实验证明方法的准确性较好（回收率为94.0%~97.5%）。用该方法测定了药物和人血清中QGLT含量，结果令人满意。本研究拓展了QGLT含量测定的新方法。

关键词：曲格列汀；牛血清白蛋白；荧光法

引言

琥珀酸曲格列汀(trelagliptinsuccinate)是一种长效二肽基肽酶IV(DPP-IV)抑制剂，由日本武田公司(Takeda)研发，用于治疗2型糖尿病。于2015年3月在日本上市，每周只需服用一次，其结构式如图1所示。

![图1 QGLT结构式](image)

1 实验部分

1.1 仪器与试剂

F-4500荧光仪（日本Hitachi），pH S-25酸度计（上海精科化学品）。1.00 mg·mL⁻¹琥珀酸曲格列汀（QGLT）标准溶液（江苏万川医疗健康产业集团有限公司提供的标准物质），以高纯水为溶剂。

2.00 mg·mL⁻¹牛血清白蛋白标准溶液（BSA）（国药集团化学试剂有限公司），以高纯水为溶剂。
pH 值为 7.4 缓冲溶液；称取 3.4 g KH₂PO₄·3H₂O 用适量水溶解，再加入 0.78 g NaOH，用水溶解稀释至 500 mL，于酸度计上调节 pH 值为 7.4。

图 2 在 QGLT 存在下 BSA 的荧光谱图

Fig. 2 Fluorescence spectra of BSA in the presence of QGLT (cBSA：4.0 μg·mL⁻¹，cQGLT 是 0.00，1.00，3.00，4.00，5.00，6.00，8.00，10.00 μg·mL⁻¹ 从 1 到 8)

2.2 酸度的影响

由图 3 可知荧光猝灭值ΔF(加入与不加 QGLT 时 BSA 荧光变化值)随 pH 值增大而增大，在 pH 值为 7.0～8.0 范围内 ΔF 达到最大并基本保持不变，之后随 pH 值增大 ΔF 下降，故在以下实验中选用生理 pH 值 (pH 7.4) 作进一步研究。

图 3 pH 值对测定影响

cBSA：4.0 μg·mL⁻¹，cQGLT：2.0 μg·mL⁻¹

Fig. 3 The influence of pH value on determination (cBSA：4.0 μg·mL⁻¹，cQGLT：2.0 μg·mL⁻¹)

2.3 介质选择

固定 BSA、QGLT 浓度，试验了 pH 值为 7.4 的 NH₄-NH₃Cl、柠檬酸-Na₂HPO₄·2H₂O、KH₂PO₄·NaOH、Tris-HCl 缓冲体系对 ΔF 的影响。结果显示对 ΔF(加入与不加 QGLT 时 BSA 发光强度差值)无明显影响。实验中选用 KH₂PO₄·NaOH（人体中的缓冲体系）。

图 4 介质对荧光测定影响 (cBSA：4.0 μg·mL⁻¹，cQGLT：2.0 μg·mL⁻¹)

Fig. 4 Effect of medium on fluorescence determination (cBSA：4.0 μg·mL⁻¹，cQGLT：2.0 μg·mL⁻¹)、1-NH₄-NH₃Cl，2-Tris-HCl，3-Citric acid-Na₂HPO₄·2H₂O，4-KH₂PO₄·NaOH

对缓冲溶液用量的影响进行了研究，发现当溶液总体积为 10.0 mL 时，其用量超过 1.0 mL ΔF 基本保持不变，实验中选用缓冲溶液用量为 2.0 mL。

2.4 灭火机理探讨

2.4.1 荧光猝灭类型

一般荧光猝灭可分为动态和静态两种类型。通过方程

$$F_0/F = 1 + K_{ph}c_q = K_{ph}c_q (Stern-Volmer 方程，S—V 方程）$$

和

$$1/(F_0 - F) = 1/F_0 + 1/(K_{sb}F_0) (Lineweaver-Burk 方程，L—B 方程)$$

处理实验数据，可了解荧光猝灭类型[29]。

其中 F₀ 和 F：加入熄灭剂后体系的荧光强度；Kₚ：动态熄灭常数；Kₛ：动态熄灭速率常数，一般都小于 2.0 × 10⁻³ L·(mol·s)⁻¹；τₛ：熄灭剂不存在时的荧光分子平均寿命，生物大分子 τₛ 约为 10⁻⁷ s；cₚ：熄灭剂浓度；Kᵦ：静态熄灭结合常数。
如果荧光猝灭主要是通过动态猝灭进行，在一定浓度范围内：
$$F/c_0 \sim c_0^{-1}$$
曲线应有良好的线性关系；如果猝灭作用主要是静态猝灭，在一定浓度范围内，
$$F/c_0 \sim c_0^{-1}$$
曲线应有良好的线性关系[8]。

图 5 和表 1 为不同温度下 BSA 与 QGLT 作用的 S—V 曲线和 L—B 曲线及线性方程和相关系数。根据表 1 计算出的
$$K \approx 10^{15} (>10^{10})$$
和 L—B 方程线性关系略优于 S—V 方程，表明 QGLT 主要通过静态猝灭方式降低 BSA 的荧光强度[8-9]。

由 $$K$$ 也可判断猝灭类型，一般对于静态猝灭来说 $$K$$ 随温度升高而降低，动态猝灭则正好相反[8-9]。不同温度下测得 QGLT 与 BSA 作用的 $$K$$（L·mol⁻¹）为：3.977×10⁴
(25°C)，1.910×10⁴(30°C)，1.889×10⁴(35°C)，随着温度升高 $$K$$ 降低，进一步说明 QGLT 可能与 BSA 结合发生了静态猝灭。

表 1 不同温度时 S—V 和 L—B 曲线性方程

<table>
<thead>
<tr>
<th>温度/℃</th>
<th>回归方程</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>$$F_0/F=1.021×10^{14}$$</td>
<td>0.996</td>
</tr>
<tr>
<td>30</td>
<td>$$F_0/F=0.987×10^{14}$$</td>
<td>0.995</td>
</tr>
<tr>
<td>35</td>
<td>$$F_0/F=0.974×10^{14}$$</td>
<td>0.998</td>
</tr>
</tbody>
</table>

2.4.2 猝灭常数与结合位点数

根据文献[11]，荧光强度 $$F$$ 与猝灭剂浓度 $$c_0$$ 满足下列关系

$$\log(F_0/F) = \log K + n \log c_0$$

$$K$$ 与 $$n$$ 即为反应的结合常数与结合位点数。BSA 与 QGLT 在不同温度下结合反应的 $$K$$ 和 $$n$$ 如表 2 所示。$$n$$ 接近 1，表明 BSA 中可能有一个位点与 QGLT 结合，而 $$K$$ 随温度升高而降低，表示 BSA 与 QGLT 形成的结合物稳定性可能随着温度升高而降低。

表 2 结合常数与热力学参数

<table>
<thead>
<tr>
<th>温度/℃</th>
<th>$$K$$ (L·mol⁻¹)</th>
<th>$$n$$</th>
<th>$$\Delta H^o$$ (KJ·mol⁻¹)</th>
<th>$$\Delta S^o$$ (J·mol⁻¹·K⁻¹)</th>
<th>$$\Delta G^o$$ (KJ·mol⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>4.529×10⁴</td>
<td>1.05</td>
<td>-63.96</td>
<td>-125.5</td>
<td>-26.56</td>
</tr>
<tr>
<td>303</td>
<td>2.958×10⁴</td>
<td>1.02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.4.3 热力学参数与作用过程

当温度变化不大时，反应的焓变可认为是一常数。根据
$$\Delta G = \Delta H - T \cdot \Delta S$$
$$\Delta G^o = \Delta H^o/RT \cdot \ln(K_2/K_1)$$
可求得 QGLT 与 BSA 结合反应中的
$$\Delta H^o$$，$$\Delta S^o$$。结果见表 2，$$\Delta G^o$$ 为负值表示结合反应自发进行的。负的焓变与熵变说明了结合作力主要是氢键和范德华力[31]。

2.5 分析应用

2.5.1 工作曲线与检出限

因为室温下 Lineweaver-Burk 曲线的线性关系更好，实验中用该曲线测定 QGLT 含量。曲线回归方程为：

$$\Delta F = F_0 - F$$

表 3 回收率及样品测定结果（$$n=3$$）

<table>
<thead>
<tr>
<th>样品</th>
<th>加入量</th>
<th>测定值</th>
<th>平均回收率</th>
<th>RSD/％</th>
</tr>
</thead>
<tbody>
<tr>
<td>QGLT 药物</td>
<td>2.0</td>
<td>3.86</td>
<td>94.0</td>
<td>1.8</td>
</tr>
<tr>
<td>4.0</td>
<td>5.80</td>
<td>95.5</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>7.76</td>
<td>96.3</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>人血清</td>
<td>2.0</td>
<td>1.89</td>
<td>94.5</td>
<td>2.0</td>
</tr>
<tr>
<td>4.0</td>
<td>3.90</td>
<td>97.5</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>5.77</td>
<td>96.2</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>
$F^{-1} = 2.711 \times 10^{-4} + 3.51 \times 10^{-3} c_{\text{QGLT}}$ (单位 $\mu g \cdot mL^{-1}$)，相关系数 $r=0.998$，线性范围为 0.5～10.0 $\mu g \cdot mL^{-1}$，根据 S/N=3 计算出检出限为 0.13 $\mu g \cdot mL^{-1}$。

2.5.2 回收率实验及样品测定

取 QGLT 药片溶液，用高纯水稀释 100 倍后，取 2.00 mL 溶液用所研究方法测定，结果见表 3。将测定结果换算为每片含量为 99.0 mg，标示量为 100 mg・片$^{-1}$，两者无显著性差异。取 10 mL 离心管 18 支，分别加入 2.0 mL 经稀释 100 倍后且已测定出含量的 QGLT 药片溶液及处理后的空白人血清溶液各 9 份，然后加入 QGLT 标准溶液，使其浓度分别为 2.0、4.0、6.0 $\mu g \cdot mL^{-1}$，每个浓度平行配制 3 份，用所研究方法测定，结果见表 3。回收率为 94.0%～97.5%。

结果见表 3。本法测定结果可靠，且操作快速简便，可用来测定药片及血清中琥珀酸格列汀含量。

References

A Fluorescence Spectroscopic Study of the Interaction between Trelagliptin Succinate and Bovine Serum Albumin and Its Analytical Application

GONG Ai-qin1, JIN Ding-qin1, ZHU Xia-shi2
1. Yangzhou Polytechnic Institute, Yangzhou 225127, China
2. College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China

Abstract In this paper the interaction between trelagliptin succinate (QGLT) and bovine serum albumin (BSA) was studied by fluorescence spectrometry. The factors affecting fluorescence quenching such as solution acidity and medium characteristics were optimized. The examination results of quenching mechanism showed that the fluorescence intensity of BSA was quenched strongly by QGLT mainly through a static quenching procedure, the number of binding sites was 1, and the binding constants was 4.529×10^9 L \cdot mol$^{-1}$ (298 k) or 2.958×10^8 L \cdot mol$^{-1}$ (303 k), respectively. The determination results of thermodynamic parameters show that the change of Gibbs free energy, enthalpy or entropy was negative, which clarified there was an automatic reaction happened between QGLT and BSA, and both hydrogen bonds and van der Waals force played a role in the binding of QGLT to BSA. It was also found in the examination that Lineweaver-Burk equation $[(F/F_0 - F)^{-1} = 2.711 \times 10^{-4} + 3.51 \times 10^{-3} c_{\text{QGLT}}^{-1}$ ($c_{\text{QGLT}}: 0.5 \sim 10.0 \mu g \cdot mL^{-1}$)] owned better linear relationship ($r=0.998$) with the detection limit of 0.13 $\mu g \cdot mL^{-1}$. The recovery experiment results showed that the method owed good accuracy (the recovery is 94.0%～97.5%) and the proposed method has been successfully applied to determine QGLT in QGLT tablet and human serum. The examination developed a new method to determine the content of QGLT.

Keywords Trelagliptin; Bovine serum albumin; Fluorescence

(Received Jan. 11, 2017; accepted Jun. 10, 2017)

* Corresponding author