基于MAX-DOAS测定大气紫外波段水汽的吸收及其对DOAS反演影响的评估
任红梅1,2, 李昂1,*, 胡肇焜1, 谢品华1,2,3, 徐晋1, 黄业园1,2, 李晓梅1,2, 钟鸿雁1,4, 张海蓉1,2, 田鑫1,4, 任博2, 郑江一1,2, 王帅5, 柴文轩5
1.中国科学院合肥物质科学研究院, 安徽光学精密机械研究所, 环境光学与技术重点实验室, 安徽 合肥 230031
2.中国科学技术大学研究生院科学岛分院, 安徽 合肥 230026
3.中国科学院区域大气环境研究卓越创新中心, 福建 厦门 361021
4.安徽大学物质科学与信息技术研究院, 安徽 合肥 230601
5.中国环境监测总站, 国家环境保护环境监测质量控制重点实验室, 北京 100012
*通讯作者 e-mail: angli@aiofm.ac.cn

作者简介: 任红梅, 女, 1994年生, 中国科学院安徽光学精密机械研究所博士研究生 e-mail: hmren@aiofm.ac.cn

摘要

大气水汽的吸收强度从微波区域到可见蓝光区域逐渐降低, 然而在紫外波段的吸收却经常被人忽略。 多轴差分吸收光谱(MAX-DOAS)技术是一种被动光学遥感技术, 可以同时反演气溶胶、 多种痕量气体(如NO2, SO2, HCHO, HONO等)以及水汽, 常用于区域大气立体分布及输送监测, 具有成本低、 时间分辨率高、 稳定、 可实时监测等特点。 水汽是一种重要的温室气体, 在紫外波段反演一些痕量气体时水汽的吸收经常不被考虑, 可能对紫外波段痕量气体的反演造成影响, 从而产生系统误差。 介绍了基于MAX-DOAS对紫外波段大气水汽的反演, 于2020年6月1日—9月24日在西安乾县进行观测, 通过选取最优反演波段, 并将反演结果与可见蓝光波段的水汽进行对比, 证实了紫外波段存在水汽吸收, 评估了紫外水汽的吸收对同波段痕量气体反演的影响。 首先, 根据不同拟合波段反演的水汽均方根误差(RMS)以及水汽和O4的吸收截面情况, 选取紫外和可见蓝光波段水汽的最优反演波段分别为351~370和434~455 nm。 其次, 通过DOAS拟合得到紫外和可见蓝光波段O4和H2O的对流层差分斜柱浓度(DSCD), 分别将紫外和可见波段的O4 DSCD和H2O DSCD做相关性分析, 两个波段O4 DSCD的相关系数 r=0.85, H2O DSCD的相关系数 r=0.80。 为消除不同波段的辐射传输差异, 将同波段的H2O DSCD和O4DSCD作比值, 两个波段H2O DSCD/O4DSCD的相关系数 r=0.89。 紫外和可见蓝光波段H2O DSCD/O4DSCD的高相关系数表明, 即使在相对沿海城市水汽浓度较低的西安市, 在363 nm附近的紫外波段同样存在水汽吸收, 这将会对采用DOAS技术在紫外波段反演其他痕量气体造成影响。 最后, 分别对可能受紫外波段水汽吸收影响的气体(O4, HONO和HCHO)进行DOAS反演误差评估, 紫外波段水汽的吸收将使O4 DSCD, HONO DSCD以及HCHO DSCD在DOAS拟合过程中增加, 分别对应于+1.16%, +8.55%和+9.04%的变化。

关键词: 多轴差分吸收光谱; 紫外波段; 水汽; 误差评估
中图分类号:X831 文献标志码:A
Measurement of Water Vapor Absorption in the Ultraviolet Band Using MAX-DOAS and Evaluation of Its Influence on DOAS Retrieval
REN Hong-mei1,2, LI Ang1,*, HU Zhao-kun1, XIE Pin-hua1,2,3, XU Jin1, HUANG Ye-yuan1,2, LI Xiao-mei1,2, ZHONG Hong-yan1,4, ZHANG Hai-rong1,2, TIAN Xin1,4, REN Bo2, ZHENG Jiang-yi1,2, WANG Shuai5, CHAI Wen-xuan5
1. Key Laboratory of Environmental Optical and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
2. Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
3. CAS Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
4. Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
5. State Environmental Protection Key Laboratory of Quality Control in Environmental Monitoring, China National Environment Monitoring Centre, Beijing 100012, China
*Corresponding author
Abstract

The absorption of atmospheric water vapor gradually weakens from the microwave to the visible band, but the absorption in the ultraviolet band has been ignored. Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) is a passive optical remote sensing technology that can simultaneously retrieve a variety of trace gases such as NO2, SO2, HCHO, HONO and water vapor. It is often used for regional atmospheric three-dimensional distribution and transportation monitoring, and has the characteristics of low cost, high time resolution stability, and real-time monitoring. Water vapor is an important greenhouse gas, and the water vapor absorption in the ultraviolet band is often not considered when we retrieve trace gases, which may affect the retrieval of trace gases in the ultraviolet band, resulting in systematic errors. This study introduced the atmospheric water vapor retrieval in the ultraviolet band using MAX-DOAS observations in Qianxian, Xi'an, from June 1 to September 24, 2020. The optimal retrieval band in ultraviolet and visible were selected andcompared. The comparison results confirmed the water vapor absorption in the ultraviolet band, and we also evaluated the influence of ultraviolet water vapor absorption on the retrieval of trace gases in the same band. First, the optimal retrieval bands for water vapor in the ultraviolet (351~370 nm) and visible blue bands (434~455 nm) were selected according to the root mean square (RMS) and the absorption cross-sections of H2O and O4. Secondly, the O4 and H2O DSCD in the ultraviolet and visible blue bands were obtained by DOAS fitting, and the correlation between the two bands was analyzed. The two bands' correlation coefficient of O4 and H2O DSCD in the two bands were 0.85 and 0.80. The ratio of O4 and H2O DSCD in the same band has also been analyzed, and the correlation coefficient in the two bands was 0.89. The high correlation coefficients of H2O DSCD and the ratio of H2O DSCD/O4DSCD in the ultraviolet and visible blue bands indicate that even Xi'an, which has a lower water vapor concentration relative to coastal cities, also has water vapor absorption in the ultraviolet band near 363 nm. It will affect the retrieval of other trace gases in the ultraviolet band using DOAS technology. Finally, the retrieval errors of gases (O4, HONO, and HCHO) that may be affected by water vapor absorption in the ultraviolet band were evaluated. The water vapor absorption in the ultraviolet band will increase O4DSCD, HONO DSCD, and HCHO DSCD during the fitting process, corresponding to the changes of +1.16%, +8.55%, and +9.04%, respectively.

Keyword: MAX-DOAS; Ultraviolet band; Water vapor; Error evaluation
引言

水汽是重要的温室气体, 在大气化学及辐射平衡中扮演重要角色[1]。 在大气光谱中, 由于在许多波长区域都存在水汽吸收, 因此在评估温室效应时也需要对其性质进行精确了解。 此外, 由于其他痕量气体所在的吸收波段经常与水汽吸收波段重叠, 因此光谱探测也需要明确水汽的吸收。 由于技术原因, 水汽吸收截面的实验室测量比较困难[2]。 而在可见蓝光和紫外光谱范围内, 水汽吸收相对较小, 更加难以探测。

直到2016年, Polyansky等[3]在实验室测量了一个光谱范围低于400 nm的水汽吸收截面(POKAZATEL), 对于室温, 其光谱范围在紫外区域可达244 nm, 弥补了HITRAN、 HITEMP等数据库中紫外波段水汽吸收截面的缺失。 2017年, Lampel等利用POKAZATEL水汽吸收截面, 采用多轴差分吸收光谱(MAX-DOAS)和长程DOAS技术在南美洲的航海实验中均发现了370 nm以下的水汽吸收[2], 为在紫外波段反演水汽提供了方法和思路。 由于Lampel等的研究均在海上观测, 水汽浓度较高, 而在水汽浓度相对较低的陆地上, 紫外波段是否同样存在水汽的吸收, 还需要进一步研究。

MAX-DOAS技术被广泛用于大气痕量气体监测[4, 5, 6, 7]。 目前, 采用MAX-DOAS技术在紫外波段反演痕量气体时, 经常会忽略紫外波段水汽的吸收, 这可能影响此波段大气中浓度含量较低的痕量气体的反演, 比如HONO和HCHO等气体。 另外, 由于水汽的吸收影响光路信息, 也会因影响O4的吸收。 紫外波段水汽的吸收还可能导致系统误差的产生, 从而影响误差评估。

本研究采用西安乾县MAX-DOAS区域站2020年6月1日— 9月24日的观测数据, 对紫外波段的水汽进行反演。 首先选取紫外波段和可见波段水汽最优的反演区间, 然后将紫外和可见波段的水汽对比, 观察两者的一致性。 最后分别评估了363 nm水汽吸收对O4, HONO和HCHO反演的影响。 采用MAX-DOAS在紫外波段测量大气水汽的吸收, 对研究紫外波段一些痕量气体的准确反演以及大气辐射平衡等方面都具有重要意义。

1 MAX-DOAS原理

MAX-DOAS技术是一种被动DOAS技术, 通过采用望远镜以不同的仰角α 指向天空, 进而采集太阳散射光[8, 9]。 每个仰角α 对于不同高度的痕量气体有着不同的灵敏度。 低仰角对近地面的吸收具有更高的灵敏度。 通过夫琅和费参考光谱(FRS)扣除强烈的夫琅和费线的干扰, 然后通过与标准气体分子吸收截面进行最小二乘拟合, 得到气体差分斜柱浓度。 另外, 由于90° 仰角的光谱中含有平流层气体的吸收, 而本研究的重点是对流层, 通过选择每个仰角循环中90° 仰角的光谱(当圈参考谱)作为FRS, 从而使仪器对结果的不稳定性以及平流层吸收气体的影响降至最低。 得到仰角α 下痕量气体的对流层差分斜柱浓度DSCD, 表达式为式(1)

DSCDα=dSCDα(α90°)-dSCDref(α=90°)(1)

2 实验部分

采用的MAX-DOAS仪器由安徽光学精密机械研究所自主研发, 安装在西安乾县羊毛湾(108.05° E, 34.53° N), 位于西安市西北方向, 海拔高度为615 m, 见图1(a)。 实验装置包括光谱仪、 望远镜、 旋转云台、 光纤、 监控摄像头、 计算机等。 通过软件控制云台转动到一定方位角及仰角, 并通过望远镜接收太阳散射光, 经过光纤进入光谱仪, 进而将数据传输至计算机储存以进一步处理。 光谱仪被置于25 ℃温控箱中以减小光谱温漂现象, 可测量波长范围为294~460 nm, 分辨率为0.35 nm。 图1(b)为MAX-DOAS仪器观测原理示意图。 表1为西安站点MAX-DOAS仪器参数。

图1 西安乾县MAX-DOAS区域站位置及观测原理
(a): 观测位置; (b): 观测原理
Fig.1 MAX-DOAS regional station location in Qianxian, Xi'an and the instrument observation principle
(a): Observation location; (b): Observation principle

表1 MAX-DOAS西安乾县区域站参数设置 Table 1 Parameter settings of MAX-DOAS regional station in Qianxian, Xi'an
3 结果与讨论
3.1 最优化反演波段

在反演水汽廓线时, 常采用最优估算法进行反演, 反演过程分为两步, 首先通过O4柱浓度反演气溶胶廓线, 然后根据气溶胶廓线反演水汽廓线, 需要在紫外和可见波段同时反演H2O和O4。 根据两者吸收截面特征(图2), 选取紫外360 nm附近和可见440 nm附近不同波段, 这两个波段需同时包含水汽和O4的吸收, 并对反演波段进行最优化测试。 以西安站点2020年6月24日9点33分仰角为20° 时的光谱(随机选择)作为测试对象, 采用QDOAS软件(http://uvvis.aeronomie.be/software/QDOAS/)进行分析, 反演紫外和可见蓝光不同波段区间(间隔为1 nm)内的水汽, 得到每个波段区间反演结果的均方根误差(RMS), 结果分别见图3(a, b)。

图2 紫外和可见蓝光波段水汽和O4吸收截面Fig.2 Ultraviolet and visible blue H2O and O4absorption cross section

图3 水汽最优反演波段测试
(a): 紫外波段; (b): 可见波段
Fig.3 Water vapor optimal retrieval band test
(a): Ultraviolet; (b): Visible

根据图3(a, b)两个波段反演水汽的测试结果, 再结合图2中水汽和O4吸收截面的分布情况, 最终选取紫外和可见蓝光波段RMS较小且同时包含O4和H2O吸收峰的反演波段分别为351~370和434~455 nm。 另外, 还可以使用有效吸收中心公式来计算每个拟合区间[λ 1, λ 2]中O4和H2O的各自有效中心[2], 如式(2)

λm=1λ1λ2σ(λ)dλλ1λ2λσ(λ)dλ(2)

对于351~370 nm波段, O4和H2O吸收截面的有效中心分别为 λmO4=361 nm和 λmH2O=363 nm; 对于434~455 nm波段, O4和H2O吸收截面的有效中心分别为 λmO4=447 nm和 λmH2O=443 nm。 两个区间的O4和H2O有效中心波长都比较接近, 因此两种吸收气体的大气辐射传输条件近似相同[2]

3.2 光谱反演

首先采用汞灯给光谱仪定标, 再将与仪器狭缝函数卷积后的水汽有效吸收参考截面输入QDOAS软件进行拟合, 两个波段的拟合参数见表2。 图4(a, b)分别为2020年7月4日10点08分仰角为5° 时的紫外和可见吸收光谱拟合示例, 反演得到的363和443 nm的H2O DSCD分别为1.19× 1024和3.84× 1023 molecules· cm-2, 对应的RMS分别为7.5× 10-4和5.81× 10-4

表2 水汽的DOAS拟合参数设置 Table 2 Parameter settings of water vapor DOAS fitting

图4 紫外(a)和可见波段(b)DOAS拟合反演示例Fig.4 Examples of DOAS fitting retrieval in ultraviolet (a) and visible bands (b)

3.3 紫外和可见波段DSCD对比

研究表明在可见蓝光波段(443 nm)反演的水汽柱浓度与相关数据集具有较好一致性(R2=0.93)[10], 因此可以认为在蓝光波段水汽能够准确反演。 将西安乾县MAX-DOAS区域站2020年6月1日— 9月24日数据在紫外和可见波段同时进行DOAS拟合, 得到O4和H2O不同仰角下的DSCD。 由于MAX-DOAS技术原理的限制, 只能在阳光比较好的白天观测, 因此整个观测期间仅有54天有效数据。 由于水汽主要集中在近地面, 选择对近地面比较敏感的小仰角(以α =5° 为例)DSCD结果进行对比分析, 两个波段的对比结果见图5(a, b, c)。

图5 紫外和可见波段DSCD的时间序列(α =5° )
(a): O4 DSCD; (b): H2O DSCD; (c): H2O DSCD/O4 DSCD
Fig.5 The DSCD in the ultraviolet and visible bands (α =5° )
(a): O4 DSCD; (b): H2O DSCD; (c): H2O DSCD/O4 DSCD

图5表明两个波段O4和H2O的DSCD随时间变化基本一致, 363 nm的DSCD均大于443 nm, 分析认为绝大部分情况下, 气体光学厚度随波长的增加而减小。 光学厚度指辐射在介质中传播时的衰减情况。 另外, 两个波段存在的气体干扰和吸收强度均不一致, 也导致了两个波段反演结果的数值差异。

将两个反演波段的O4 DSCD和H2O DSCD做相关性分析, 紫外和可见波段O4 DSCD之间的相关系数r=0.85, H2O DSCD之间的相关系数r=0.80[图6(a, b)]。 另外, 为消除不同波段的辐射传输差异, 分析了两个波段H2O DSCD/O4 DSCD的相关性, 结果表明其相关性最大, r=0.89[图6(c)]。 两个波段的同种气体及比值都有较好的相关性, 结果验证了在紫外波段水汽的吸收。 综合比较图5和图6发现, 相比于沿海城市, 在水汽浓度较低的西安市, 363 nm附近也同样存在水汽的吸收, 这将会对采用DOAS技术在紫外波段反演其他痕量气体造成影响, 导致误差产生。 小于370 nm的波段, 存在多种痕量气体的吸收, 可能受水汽吸收影响的气体有O4, HONO以及HCHO(见图7), 3.4节分别讨论了紫外水汽的吸收对每种痕量气体的影响。

图6 O4和H2O DSCD在紫外和可见波段的相关性分析
(a): H2O DSCD; (b): O4 DSCD; (c): H2O DSCD/O4 DSCD
Fig.6 Correlation analysis of O4 and H2O DSCD in in the ultraviolet and visible bands
(a): H2O DSCD; (b): O4 DSCD; (c): H2O DSCD/O4 DSCD

图7 紫外波段H2O和其他痕量气体(O4, HONO以及HCHO)的吸收截面
3.4 水汽紫外波段的吸收对痕量气体反演的影响
Fig.7 The absorption cross section of H2O and other trace gases (O4, HONO and HCHO) in the ultraviolet band

紫外波段水汽的吸收一直是未知, 忽略363 nm附近的水汽吸收不仅会增加痕量气体DOAS拟合误差, 而且还会导致系统偏差。 对于不同的数据、 DOAS拟合波段以及仪器参数(如光谱分辨率等), 对结果影响可能会有所不同。 基于MAX-DOAS西安乾县区域站2020年6月1日— 9月24日数据, 对可能影响的气体(O4, HONO和HCHO)进行反演。 反演过程分为两次, 一次在拟合过程中包含POKAZATEL 水汽吸收参考截面, 一次不包含, 其他反演参数设置见表3。 同样以5° 仰角为例, 为消除随机误差, 把观测期间反演的气体DSCD求均值, 研究了水汽吸收对痕量气体反演的影响。 图8[a(a1, a2, a3)]和图8[b(b1, b2, b3)]为2020年8月25日下午15:26仰角为5° 时各痕量气体在无水汽吸收参考截面和有水汽吸收参考截面情况下的DOAS拟合反演示例。

表3 O4, HONO以及HCHO的DOAS拟合参数设置 Table 3 The DOAS fitting parameter for O4, HONO and HCHO

图8 O4, HONO以及HCHO的DOAS拟合反演示例
(a): 反演过程中不包含水汽吸收参考截面; (b): 反演过程中包含水汽吸收参考截面
Fig.8 Example of DOAS fitting retrieval for O4, HONO and HCHO
(a): The water vapor absorption reference cross section was not included in the fitting process; (b): The water vapor absorption reference cross section was included in the fitting process

3.4.1 紫外波段水汽吸收对O4反演的影响

对于MAX-DOAS观测, 需要确定有效光路长度L, 从而将观测到的沿光路积分浓度转换为相应的痕量气体浓度, O4的吸收便可用于推断有关的大气光路信息。 MAX-DOAS技术可以通过设置辐射传输模型(RTM)的输入参数以及观测到的O4 DSCD来估算气溶胶消光廓线。 然而, 对于一些观测的太阳散射光, 必须通过校正因子来校正O4的吸收, 以解释测量的柱浓度, 很多研究估计了此校正因子为1.2~1.5, 以匹配测量的DSCD[11]。 到目前为止, 未见明确此校正因子得出的原因。 2016年Ortega等研究表明, 造成这种修正系数的另一个原因可能是无法计算的对流层吸收体, 例如水汽吸收[12]

为了评估水汽吸收对O4反演的影响, 选择O4的紫外反演波段为338.2~370 nm, 对整个观测期间的光谱进行反演, 求气体DSCD均值。 当在DOAS反演中包括水汽截面时, O4DSCD均值为1.73× 1043 molecules2· cm-5; 不包括水汽吸收截面时, O4DSCD 均值为1.71× 1043 molecules2· cm-5。 同波段的水汽吸收将使O4DSCD增加, 从而影响校正因子, 对应于+1.16%的改变。

3.4.2 紫外波段水汽吸收对HONO反演的影响

HONO在大气化学中起关键作用, 其光解作用会导致大气中的OH自由基的产生[13]。 由于其高反应活性和白天快速的光解作用, HONO浓度较低, 尤其是在白天, 因此很难对其进行测量。 DOAS技术具有高灵敏度, 可以对HONO进行测量, 但是必需要考虑反演波段内所有可能的痕量气体吸收, 以进一步降低检测限并消除潜在的偏差。

HONO的反演波段为337~375 nm, 然而10点至15点, HONO浓度很低, DOAS反演出现较大误差, 因此排除这一段时间, 只保留每天10:00前和15:00后的反演结果。 当在DOAS反演中包括水汽吸收截面时, HONO的DSCD均值为2.54× 1015 molecules· cm-2, 不包括水汽吸收截面时, HONO的DSCD均值为2.34× 1015 molecules· cm-2。 同波段的水汽吸收将使HONO的DSCD增加, 对应于+8.55%的变化。

3.4.3 紫外波段水汽吸收对HCHO反演的影响

HCHO是大气中含量最丰富的碳氢化合物之一, 广泛参与大气中的光化学反应, 同时也是气溶胶的重要前体物, 在大气化学中承担了非常重要的作用。 采用DOAS技术在紫外波段反演HCHO已经有较多研究[5, 6, 7], 但很少有研究考虑此波段的水汽吸收。

HCHO的反演波段为336.5~359 nm, 同样对观测期间所有有效光谱进行反演, 当在DOAS反演中包括POKAZATEL水汽吸收截面时, HCHO的DSCD均值为3.86× 1016 molecules· cm-2, 不包括水汽吸收截面时, HCHO的DSCD均值为3.54× 1016 molecules· cm-2。 同波段的水汽吸收将使HCHO的DSCD增加, 对应于+9.04%的变化。

4 结论

水汽是大气中的重要成分之一, 它在紫外波段的吸收影响MAX-DOAS对一些痕量气体的反演。 采用西安乾县MAX-DOAS区域站2020年6月1日— 9月24日数据, 研究了紫外和可见蓝光波段水汽的吸收。 首先通过在不同波段区间内进行DOAS拟合, 根据RMS以及水汽和O4的吸收截面情况, 选取紫外和可见蓝光波段水汽的最优反演区间分别为351~370和434~455 nm。 然后, 得到两个反演波段O4和H2O的DSCD, 两个波段O4和H2O的DSCD相关系数r分别为0.85和0.80。 两波段H2O DSCD/O4 DSCD的相关系数为0.89。 紫外和可见波段之间的高相关性表明, 紫外波段同样存在水汽吸收, 这将使相同波段痕量气体的反演误差增大。 最后, 对可能受到紫外波段水汽吸收影响的气体(O4, HONO和HCHO)分别进行了DOAS误差评估。 紫外波段水汽的吸收将使O4的DSCD, HONO的DSCD以及HCHO的DSCD在DOAS拟合过程中增加, 分别对应于+1.16%, +8.55%和+9.04%的变化。 考虑紫外波段363 nm附近水汽的吸收可以降低DOAS方法的系统误差, 对于在紫外波段反演其他痕量气体有着重要意义。

参考文献
[1] Wang H, Souri A H, Abad G G, et al. Atmos. Meas. Tech. , 2019, 12(9): 5183. [本文引用:1]
[2] Lampel J, Phler D, Polyansky O L, et al. Atmos. Chem. Phys. , 2017, 17(2): 1271. [本文引用:4]
[3] Polyansky O L, Kyuberis A A, Lodi L, et al. Mon. Not. R. Astron. Soc. , 2017, 466: 1367. [本文引用:1]
[4] Wang Y, Dorner S, Donner S, et al. Atmos. Chem. Phys. , 2019, 19: 5417. [本文引用:1]
[5] Tian X, Xie P, Xu J, et al. Atmos. Chem. Phys. , 2019, 19(5): 3375. [本文引用:2]
[6] Wang Y, Lampel J, Xie P, et al. Atmos. Chem. Phys. , 2017, 17(3): 2189. [本文引用:2]
[7] Wang Y, Beirle S, Lampel J, et al. Atmos. Chem. Phys. , 2017, 17(8): 5007. [本文引用:2]
[8] Frieß U, Baltink H K, Beirle S, et al. Atmos. Meas. Tech. , 2016, 9(7): 3205. [本文引用:1]
[9] Drosoglou T, Bais A F, Zyrichidou I, et al. Atmos. Chem. Phys. , 2017, 17(9): 5829. [本文引用:1]
[10] REN Hong-mei, LI Ang, HU Zhao-kun, et al(任红梅, 李昂, 胡肇焜, ). Acta Phys. Sin. (物理学报), 2020, 69(20): 204204. [本文引用:1]
[11] Irie H, Nakayama T, Shimizu A, et al. Atmos. Meas. Tech. , 2015, 8: 2775. [本文引用:1]
[12] Ortega I, Berg L K, Ferrare R A, et al. J. Quant. Spectrosc. Ra. , 2016, 176: 34. [本文引用:1]
[13] Zhang S, Sarwar G, Xing J, et al. Atmos. Chem. Phys. , 2021, 21(20): 15809. [本文引用:1]