硫杂杯[4]芳烃基胶束自组装荧光探针的结构性质及检测性能的研究
李园义, 汪波, 张滢, 胡晓钧*, 张智, 胡新妍
上海应用技术大学化学与环境工程学院, 上海 201418
*通讯联系人 e-mail: hu-xj@mail.tsinghua.edu.cn

作者简介: 李园义, 1993年生, 上海应用技术大学化学与环境工程学院硕士研究生 e-mail: 166061203@mail.sit.edu.cn

摘要

水体中重金属污染因威胁生态环境和人类健康而被受广泛关注。 荧光探针由于具有快速高效检测重金属的特性, 一直是该领域的研究热点。 通常, 荧光探针在结构上包括对待测物质起识别作用的受体和能产生信号响应的荧光体, 并逐步形成了内在型、 共轭型、 系综型和模板辅助自组装型等四种结构类型。 近年来, 基于受体和荧光体在表面活性剂胶束内自组装而形成的胶束自组装型荧光探针因结构简单、 易于制备、 能直接应用于水环境等特点逐渐受到重视。 以对铜离子具有优异结合性能的对叔丁基硫杂杯[4]芳烃(TCA)为受体, 以芘、 荧蒽、 蒽、 菲、 苝等分子为荧光体, 通过表面活性剂胶束自组装制备针对Cu2+检测的胶束自组装型荧光探针, 采用参比法测定了胶束自组装荧光探针的荧光量子产率, 采用稳态荧光法测定了胶束聚集数, 同时通过计算荧光猝灭率分别考察了荧光体种类、 复配表面活性剂等因素对该探针的Cu2+检测性能的影响情况。 实验结果显示, 采用十二烷基硫酸钠(SDS)、 曲拉通100(TX-100)、 聚氧乙烯月桂醚(Brij35)等三种不同的表面活性剂对探针荧光体的荧光量子产率产生了明显影响, 测得的荧光探针荧光量子产率介于0.25~0.47, 且三者逐渐增大, 说明表面活性剂改变了胶束内荧光分子芘所处微环境的极性, 且不同类型表面活性剂对微环境极性的影响程度有所差异, 微环境极性的增强对极性更大的激发态芘具有更强的稳定作用。 而受体TCA的加入对荧光体所处微环境极性影响较小, 未对荧光量子产率产生较大影响。 但TCA的加入使探针的胶束聚集数明显减少, 这归因于具有两亲性的受体TCA分子通过胶束自组装进入并分散在表面活性剂分子层中, 形成共胶束结构, 从而改变了表面活性剂分子的聚集状态。 荧光体变更对荧光探针的Cu2+检测性能有显著影响, 在同样条件下, 以荧蒽、 蒽、 菲作为荧光体的探针检测Cu2+所得到的荧光猝灭率远高于芘、 苝, 这主要是因为不同荧光体在从激发态返回基态时辐射跃迁所释放能量不同, 其能量与受体TCA识别Cu2+所需能量之间的匹配度越高, 荧光猝灭率越大。 不同类型的表面活性剂之间的复配能明显提升荧光探针检测性能, 当非离子/阴离子、 非离子/阳离子型复配表面活性剂之间的复配比例分别为7∶3和1∶1时荧光猝灭率达到最大值, 且均高于单一表面活性剂时的荧光猝灭率。 这说明不同类型表面活性剂复配的最佳比例存在较大差异, 但均有效地增强了受体与荧光体的分散性及自组装性能, 提高了对Cu2+的检测性能。 研究结果将为新型胶束自组装荧光探针的设计和应用提供数据参考。

关键词: 硫杂杯[4]芳烃; 胶束自组装; 荧光探针; 结构性质; 检测性能
中图分类号:O657.3 文献标识码:A
Study on the Structural Properties and the Detection Performances of Thiacalix[4]arene-Based Micellar Self-Assembled Fluorescent Probe
LI Yuan-yi, WANG Bo, ZHANG Ying, HU Xiao-jun*, ZHANG Zhi, HU Xin-yan
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
Abstract

Heavy metal pollution in water is widely concerned because it threatens the ecological environment and human health. The fluorescent probe has been a research focus in this field due to the rapid and efficient detection for heavy metals. Generally, the fluorescent probe structurally includes a receptor recognizing a desired analyte and a fluorophore generating a signal response. It gradually has formed four kinds of structures, which are intrinsic, conjugate, ensembling and template-assisted self-assembled types. In recent years, micellar self-assembled fluorescent probes based on the self-assembly of acceptor and fluorophore in surfactant micelles have attracted attentions. This is due to their simple structure, easy preparation and direct application to water environment. In this paper, the micellar self-assembled fluorescent probes for the detection of Cu2+ ions were prepared through self-assembly of surfactant micelles. The p-tert-butylthiacalix[4]arene (TCA) was used as acceptor with excellent bonding property to copper ions. And pyrene, fluoranthene, anthracene, phenanthrene, perylene were used as fluorophore. The fluorescence quantum yields of the micellar self-assembled fluorescent probes were measured by the reference method. The micelle aggregation numbers were determined by the steady-state fluorescence method. At the same time, the influences of fluorophore species and compound surfactants were investigated on detection performances of the probes for Cu2+ ions by calculating the fluorescence quenching rate. The experimental results showed that the three surfactants, which are sodium dodecyl sulfate (SDS), Triton X-100 (TX-100) and polyoxyethylene lauryl ether (Brij35), had significant effects on fluorescence quantum yields of the probes. Their fluorescence quantum yields were in the range of 0.25~0.47. And they gradually increased. These indicated that the polarities of the microenvironment inside the micelles were changed by surfactant micelles. And the influences of different types of surfactants on the microenvironment polarity were different. The enhancement of the microenvironment polarity made excited pyrene more stable. The addition of acceptor TCA had little effect on the polarity of the microenvironment in which the fluorophore was located. And it didn’t have a significant influence on the fluorescence quantum yield. However, the micellar aggregation numbers of the probe markedly decreased after the addition of TCA. They were attributed to the fact that the amphiphilic receptor TCA molecules dispersed into the surfactant molecular layer through micelle self-assembly forming co-micelle structure. Thus, the aggregation state of the surfactant molecules was changed. The fluorophore had a significant effect on the detection performance of the probe for Cu2+ ions. Under the same conditions, the fluorescence quenching rates of the probes to detect Cu2+ ions respectively using fluoranthene, anthracene and phenanthrene as fluorophores were much higher than those of pyrene and perylene. This was mainly due to the different energies released by fluorophore radiative transitions from the excited state to the ground state. And the higher the matching degree with the energy required by the acceptor TCA to recognize Cu2+ ions, the greater the fluorescence quenching rate. The compound surfactants could obviously improve the detection performance of the fluorescent probe. When the mole ratios of non-ionic/anionic and non-ionic/cationic surfactants were 7∶3 and 1∶1 respectively, the fluorescence quenching rates were maximum. And the fluorescence quenching rates of the compound surfactants both were higher than those of single surfactant. These showed that the optimal compound ratios of different types of surfactant were quite different. But they both effectively enhanced the dispersibility and self-assembled performance of receptor and fluorophore. Moreover, they improved the detection performance of the probe for Cu2+ ions. The results of the thesis will provide a reference for the design and application of novel micellar self-assembled fluorescent probes.

Key words: Thiacalix[4]arene; Micellar self-assembly; Fluorescent probe; Structural property; Detection performance
引 言

水体中重金属污染日益成为威胁生态环境和人类健康的重要问题[1]。 传统的分析检测技术, 如质谱、 原子吸收光谱等, 需要昂贵的仪器设备、 复杂的样品处理过程以及熟练的操作技巧而在应用中受到限制, 荧光探针具有快速高效检测重金属的特性而成为该领域的研究热点[2]。 荧光探针通常由对待测物质起识别作用的受体和产生信号响应的荧光体组成, 逐步形成了内在型、 共轭型、 系综型和模板辅助自组装型等四种结构类型[3]。 以表面活性剂胶束为模板, 将荧光体和受体在胶束内自组装形成稳定的胶束而制得胶束自组装荧光探针, 因其结构简单、 易于制备、 操作简便、 能直接应用于水环境等优势而受到研究者的重视[4, 5]

硫杂杯芳烃, 是由苯环以硫原子桥连形成的杯状结构, 苯环上端修饰叔丁基等疏水基团, 下端修饰与重金属离子结合的官能团[6], 如: 酰胺、 冠醚等[7], 达到与不同重金属离子选择性结合的目的, 因而作为受体被用于胶束自组装荧光探针。 胡晓钧等[8]以硫杂杯[4]芳烃为受体制备得到了“ on-off” 型胶束自组装荧光传感器以检测铜离子, 研究了pH值、 受体浓度对该荧光探针检测性能的影响。 虽然已有文献报道了以硫杂杯芳烃作为受体制备胶束自组装荧光探针[9], 但对其结构性质的研究还鲜有报道, 且需深入考察其检测性能从而为制备新型胶束自组装荧光探针提供理论指导。

本文以对铜离子具有优异结合性能的对叔丁基硫杂杯[4]芳烃(TCA)为受体, 研究胶束自组装荧光探针在不同表面活性剂胶束中TCA对其结构性质(荧光量子产率、 胶束聚集数)的影响, 同时分别考察了荧光体种类、 复配表面活性剂等因素对该探针的Cu2+检测性能的影响情况, 从而将为该探针的实际应用及新型探针的开发提供数据参考。

1 实验部分
1.1 试剂与仪器

受体TCA由文献方法[10]自制。 各荧光体(芘、 苝、 菲、 蒽、 荧蒽)购于阿拉丁试剂有限公司; 十二烷基硫酸钠(SDS)、 聚氧乙烯月桂醚(Brij35)、 曲拉通100(TX-100)、 十二烷基苯磺酸钠(SDBS)、 十四烷基三甲基溴化铵(TTAB)购于国药集团化学试剂有限公司(均为分析纯)。 其他试剂均购于天津博迪化工股份有限公司(均为分析纯)。 实验用水为超纯水。

荧光光谱采用F-4600型荧光光谱仪(日本Hitachi公司)测定; 紫外-可见吸收光谱采用Cary 50型紫外-可见分光光度仪(美国Varian公司)测定。

1.2 方法

以超纯水溶解表面活性剂得到表面活性剂胶束溶液, 搅拌中加入一定量的TCA、 荧光体或二苯甲酮母液, 调节pH 8, 25 ℃下震荡2 h后, 得到探针溶液。

参比法[11]测定荧光量子产率Yu: 配制1.0× 10-3 mol· L-1的硫酸奎宁参比溶液。 依次扫描硫酸奎宁溶液、 各探针溶液的紫外-可见光谱及荧光发射光谱, 以硫酸奎宁溶液在激发波长为313 nm的荧光量子产率0.55为标准, 计算得到探针在335 nm波长下的Yu

稳态荧光法[12]测定胶束聚集数Nm: 在波长335 nm激发光照射下, 测量探针溶液在372 nm处的荧光发射强度I372, 求得不同表面活性剂在加入TCA前后的Nm

荧光猝灭率的测定: 测量加入Cu2+前后的荧光发射光谱, 计算得到相应的荧光猝灭率。

2 结果与讨论
2.1 荧光量子产率及微环境极性

三种表面活性剂SDS, TX-100和Brij35吸光较弱且无明显的自发荧光现象而对荧光量子产率测定的干扰较小。 表面活性剂和TCA对荧光量子产率的影响如图1(a)所示, 荧光探针的荧光量子产率在0.25~0.47之间, 且三者逐渐增大。 这主要是因为表面活性剂改变了胶束内部的芘所处微环境的极性, 且不同的表面活性剂对微环境极性的改变程度有差异。 荧光体芘所处微环境的极性大小可由1/I3值表示[13], 表面活性剂和TCA对芘的I1/I3值的影响如图1(b)所示, 可知荧光体芘所处微环境极性相应增大。 这是因为处于激发态的芘的极性比基态的大, 而微环境极性越强对激发态的芘产生的稳定作用更强。 但TCA的加入及其浓度的改变对芘的荧光量子产率影响较小, 未明显改变芘所处胶束内部微环境的极性。

图1 表面活性剂和TCA对荧光量子产率 及芘的I1/I3值的影响
a: cTCA=0; b: cTCA=2× 10-6 mol· L-1; c: cTCA=4× 10-6 mol· L-1; d: cTCA=6× 10-6 mol· L-1
Fig.1 Effect of surfactant and TCA on the fluorescence quantum yield
a: cTCA=0; b: cTCA=2× 10-6 mol· L-1; c: cTCA=4× 10-6 mol· L-1; d: cTCA=6× 10-6 mol· L-1

2.2 胶束聚集数

加入TCA前后各表面活性剂胶束聚集数的变化, 如图2所示。 加入TCA的SDBS、 TTAB的胶束聚集数均较未加入TCA时明显减小, 且计算得到胶束中TCA的平均数量分别是0.26和0.14, 说明少量TCA的加入会显著减小形成胶束的表面活性剂分子的数量。 这主要是因为TCA具有一定的两亲性, 在O/W体系中, TCA分子被分散在表面活性剂形成的胶束层中, 占据了表面活性剂分子的空间形成共胶束结构, 从而减少了表面活性剂分子的数量, 胶束结构发生明显改变, 形成的探针结构见图3。

图2 TCA对胶束聚集数的影响
a: 无TCA; b: 添加TCA
Fig.2 Effect of TCA on the aggregation number of micelle
a: The absence of TCA; b: The presence of TCA

图3 硫杂杯[4]芳烃基胶束自组装荧光探针的结构示意图
2.3 荧光体种类对检测性能的影响
Fig.3 Structural schematic diagram of the thiacalix[4]arene-based micellar self-assembled fluorescent probe

实验中只改变荧光体种类, 以相应激发波长/检测波长(λ ex/λ em)检测Cu2+, 扫描荧光发射光谱并计算得到荧光猝灭率(见图4), 可知, 分别以荧蒽(278/390 nm)、 蒽(280/395 nm)、 菲(274/405 nm)作为荧光体探针的荧光猝灭率明显高于芘(335/372 nm)、 苝(413/475 nm), 说明以荧蒽、 蒽、 菲作为该探针的荧光体能增强对Cu2+的检测性能。 这主要是因为不同荧光体经激发光照射后, 从激发态返回基态时辐射跃迁所释放的能量不同。 TCA下端酚羟基部分与Cu2+结合产生识别作用后, 荧光体通过TCA发生能量转移而有效地猝灭了荧光发射。 能量匹配范围由光子能量计算可得, 发射光能量在3.06~3.18 eV范围的探针对Cu2+的离子检测更灵敏高效。

图4 含不同荧光体种类的探针的荧光猝灭率
a: 芘; b: 荧蒽; c: 蒽; d: 菲; e: 苝
Fig.4 Fluorescence quenching rate of the probe with different fluorophores
a: Pyrene; b: Fluoranthene; c: Anthracene; d: Phenanthrene; e: Perylene

2.4 复配表面活性剂对检测性能的影响

表面活性剂作为辅助模板是组成胶束自组装荧光探针的重要单元。 在波长413 nm激发光照射下, 测量475 nm下探针的荧光发射强度, 考察了非离子表面活性剂(TX-100)分别与阴、 阳离子型表面活性剂(SDBS, TTAB)复配对探针的Cu2+检测性能的影响。 图5(a)和(b)显示了不同复配比例对荧光探针的荧光猝灭率的影响。 探针的荧光猝灭率随着TX-100/SDBS, TX-100/TTAB的复配比例增加均先增大再减小, 复配比例分别在7∶ 3和1∶ 1时荧光猝灭率达到最大值。 这表明非离子型表面活性剂TX-100分别与阴、 阳离子型表面活性剂SDBS、 TTAB的最佳复配比例具有显著差异, 但均优于单一表面活性剂的检测效果, 且有效增强了TCA、 荧光体在胶束中的分散性及自组装效果, 从而提高了探针对Cu2+的检测性能。

图5 表面活性剂复配比例对荧光探针荧光猝灭率的影响
(a): TX-100/SDBS; (b): TX-100/TTAB
Fig.5 Effect of compound ratio of surfactant on fluorescence quenching rate of the fluorescent probe
(a): TX-100/SDBS; (b): TX-100/TTAB

3 结 论

以对铜离子具有优异结合性能TCA为受体, 研究了胶束自组装荧光探针在不同表面活性剂胶束中TCA对荧光量子产率、 胶束聚集数的影响, 并且考察了荧光体种类、 复配表面活性剂对Cu2+检测性能的影响。 结果表明, 表面活性剂改变了荧光体所处微环境的极性, 极性越大, 该荧光探针的荧光量子产率则越高; 但TCA并未明显改变胶束内部微环境的极性, 对荧光量子产率影响较小。 TCA的加入能显著降低表面活性剂的胶束聚集数。 选择发射光子能量在3.06~3.18 eV范围内的荧光体, 非离子型表面活性剂(TX-100)分别与阴离子(SDBS)、 阳离子(TTAB)型表面活性剂的复配比例分别为7∶ 3和1∶ 1时, 该荧光探针具有更灵敏的Cu2+检测性能。 研究结果将为新型胶束自组装荧光探针的设计和应用提供数据参考。

The authors have declared that no competing interests exist.

参考文献
[1] Baban K B, Tejinder K, Ritula T, et al. Biosensors and Bioelectronics, 2017, 94: 443. [本文引用:1]
[2] Wu Weina, Mao Pand ong, Wang Yuan, et al. Sensors and Actuators B, 2018, 258: 393. [本文引用:1]
[3] Nilanjan D, Santanu B. The Chemical Record, 2016, 16(4): 1934. [本文引用:1]
[4] HU Xiao-jun, ZHANG Zhi(胡晓钧, 张智). Journal of Shenyang University(沈阳大学学报), 2015, 27(2): 87. [本文引用:1]
[5] Tiziana D G, Raimondo G, Federico P, et al. Journal of Photochemistry and Photobiology A, 2017, 345: 74. [本文引用:1]
[6] Jugun P, Chinta B R, Chebrolu P R. Coordination Chemistry Reviews, 2012, 256(23-24): 2762. [本文引用:1]
[7] Rajesh K, Yeon O L, Vand ana B, et al. Chemical Society Reviews, 2014, 43(13): 4824. [本文引用:1]
[8] Hu Xiaojun, Li Congming, Song Xueying, et al. Inorganic Chemistry Communications, 2011, 14: 1632. [本文引用:1]
[9] Burilov V A, Mironova D A, Ibragimova R R, et al. Colloids and Surfaces A, 2017, 515: 41. [本文引用:1]
[10] Shinya T, Takafumi U, Satoru N, et al. The Journal of Organic Chemistry, 2015, 80(2): 1070. [本文引用:1]
[11] Gao Zhihao, Lin Zhengzhong, Chen Xiaomei, et al. Sensors and Actuators B, 2016, 222: 965. [本文引用:1]
[12] Pablo F G, Pilar B, Alfredo A, et al. Langmuir, 2016, 32(16): 3917. [本文引用:1]
[13] Yan Hui, Cui Peng, Liu Chengbu, et al. Langmuir, 2012, 28(11): 4931. [本文引用:1]