福建寿山溪蛋石的矿物学和谱学研究
许雅婷, 秦涵斐, 陈涛*
中国地质大学珠宝学院, 湖北 武汉 430074
*通讯联系人 E-mail: summerjewelry@163.com

作者简介: 许雅婷, 女, 1994年生, 中国地质大学珠宝学院硕士研究生 E-mail: ihyun007@163.com

摘要

溪蛋石是寿山石的著名品种之一, 指散落在月洋溪中的一种山坑石, 系寿山石中的芙蓉石品种的风化产物。 残块经过雨水冲刷流入溪中, 复受水流、 河沙等长年冲击, 形成浑圆卵石状外表, 因其易于雕刻塑形, 广受近代雕刻家好评。 为了探究寿山溪蛋石的矿物学和谱学特征, 运用常规的宝石学测试方法、 X射线粉末衍射仪、 傅里叶变换红外光谱仪、 显微激光拉曼光谱仪和电子探针等测试方法, 对几件黄色溪蛋石样品的矿物组成、 红外及拉曼光谱特征、 化学成分等展开了全面研究。 常规宝石学测试结果表明, 溪蛋石样品的相对密度约为2.8, 摩式硬度小于3; 为了避免层状硅酸盐矿物的择优取向性, XRD实验采用侧压法, 测试结果表明, 溪蛋石由较纯的叶蜡石组成, 并以单斜晶系(2M型)叶蜡石的形式存在, 以2 θ=19°~22°之间4.44 Å(020), 4.24 Å(1¯12)和4.17 Å(111)三个衍射峰为特征, 其中(1¯12)和(111)两个衍射峰相距很近, 在(1¯12)衍射峰(2 θ=21.06°)右侧出现了一个衍射肩; 在2 θ=28°~31°之间, 以3.06 Å(003)强峰(2 θ=29.05°)为特征; 采用红外光谱仪可以有效的确定溪蛋石基质和石皮部分的矿物成分。 样品的红外光谱表明, 溪蛋石的风化皮与基质部分矿物成分均为叶蜡石, 指纹区的主要特征峰为1 122, 1 068, 1 052, 949, 853, 835, 812, 541和484 cm-1, 其中, 1 122 cm-1归属于Si—O伸缩振动, 1 068和1 052 cm-1附近强而尖锐的吸收峰由简并解除的Si—O—Si伸缩振动引起, 949 cm-1左右的吸收窄带由Al—OH面内弯曲振动引起; 853, 835及812 cm-1处强度较弱的倒“山”字形吸收谱带属于Al—OH面外弯曲振动, 541 cm-1处吸收峰为Si—O—Al伸缩振动引起, 484 cm-1归属于Si—O弯曲振动; 官能团区3 675 cm-1处尖锐的吸收峰由Al—OH伸缩振动所导致, 指示了叶蜡石结构的高度有序化。 采用显微激光拉曼光谱对溪蛋石中的包裹体进行测试, 以确认其矿物成分。 结果显示, 点片状黑色包裹体为赤铁矿, 拉曼特征峰为224, 291, 409, 494以及1 315 cm-1, 灰白色矿物为硬水铝石, 拉曼特征峰出现在448, 499和667 cm-1, 还存在707, 788和1 194 cm-1处弱峰, 与硬水铝石的标准谱峰吻合。 此外, 基质部分在111, 194和261 cm-1处的拉曼峰由Si—O键伸缩振动所致, 706 cm-1处强而尖锐的拉曼峰以及3 670 cm-1处的峰是由O—H伸缩振动所致, 与叶蜡石的拉曼光谱一致, 也与红外光谱的测试结果对应。 根据矿物单位分子中的电价平衡原则和正电荷总数, 利用电子探针测试数据计算溪蛋石的平均晶体结构化学式为: (Al1.98Na0.02Cr0.01)[(Si3.98Al0.02)O10](OH)2。 溪蛋石化学成分稳定, 主要含有Si(64.88%), Al(27.55%)。 寿山溪蛋石中含0.2%左右的Cr和0.02%左右的Fe和Cr元素含量远大于Fe元素, 因此推测溪蛋石的浅黄色由Cr和Fe离子共同作用所致。

关键词: 溪蛋石; 叶蜡石; 傅里叶变换; 红外光谱; 拉曼光谱; 福建寿山
中图分类号:P575.4 文献标志码:A
Mineralogical and Spectroscopic Study on Xidan Stone from Shoushan County, Fujian Province
XU Ya-ting, QIN Han-fei, CHEN Tao*
Gemological Institute, China University of Geosciences, Wuhan 430074, China
Abstract

Xidan Stone, which is a kind of mountain stones scattered across the Yueyang Stream and weathering product from the famous Shoushan Furong Stone, is one of the well-known varieties of Shoushan stone. Washed into the stream by rain, blocks of Xidan Stone have been impacted by the water and river sand for several years to form a round pebble appearance. Because it is easy to be sculptured, Xidan Stone is widely praised by modern sculptors. In order to analyze this stone from different aspects including mineral components, spectroscopic features, chemical composition and color origin, the systematic mineralogical and spectroscopic studies were conducted on the yellow Xidan stone samples from Shoushan rivulet of Fujian Province, with the help of standard gemological methods, X-Ray powder diffraction, infrared absorption spectroscopy, laser Raman spectroscopy and Electron probe microanalysis. The gemological testing results inferred that Xidan stone samples are pebble-shaped which contain light yellow substrate and rough weathered skin. Examined under magnification, the Xidan stone samples have tiny black dot-like inclusions and white grey mineral component. The Xidan stone samples have an average relative density of 2.8 by hydrostatic weighing method and a Moh’s hardness below three. According to the testing results of XRD, the major constituent mineral of Xidan stone is pyrophyllite, which is in the type of monoclinic pyrophyllite (2M type). The characteristic feature is the three diffraction peaks of 4.44 4.44 Å (020), 4.24 Å (1¯12) and 4.17 Å (111) between 2 θ=19° and 22°. The two diffraction peaks (1¯12) and (111) lie closed to each other, therefore a diffraction shoulder appears on the right side of the (1¯12) diffraction peak (2 θ=21.06°). Another characteristic feature is the 3.06 Å (003) strong peak (2 θ=29.05°) between 2 θ=28° and 31°. Infrared spectroscopy is an effective method to tell the mineral composition of weathering skin parts as well as the substrate parts of Xidan stone samples. The FTIR spectrum shows that these two parts share the same mineral component of pyrophyllite. In fingerprint region, the main absorption bands are 1 122, 1 068, 1 052, 949, 853, 835, 812, 541 and 484 cm-1. Infrared absorption band at 1 122, 1 068 and 1 052 cm-1 are induced with Si—O symmetric stretching vibration and Si—O—Si antisymmetric stretching vibration. Infrared absorption band at 949 cm-1 is induced with Al-OH in-plane bending vibration. Mountain-like infrared absorption bands at 853, 835 and 812 cm-1 are induced with Al—OH out-of-plane bending vibration. Infrared absorption peaks at 541 and 484 cm-1 are induced with Si—O—Al stretching vibration and Si—O bending vibration. In high frequency region, the acute infrared absorption peak at 3 675 cm-1 is induced with Al—OH stretching vibration indicating the highly ordered structure of Xidan Stone samples. Laser Raman spectroscopy is an effective and non-destructive way to analyze the inclusions. LRM testing confirmed that the black inclusions are composed by hematite and the white grey mineral component is diaspore. Raman peaks at 224, 291, 409, 494 and 1 315 cm-1 are typicalfeatures of hematite. Raman peaks at 448, 499, 667, 707, 788 and 1 194 cm-1 correspond to the typical features of diaspore. In addition, Raman spectrum of substrate parts of samples shows the characteristic peaks of pyrophyllite at 111, 194 and 261 cm-1, which are induced with O—H stretching vibration. Based on the unit price of mineral balance principle molecule and the total number of positive charges, the average crystal structural formula of Xidan Stone is (Al1.98Na0.02Cr0.01)[(Si3.98Al0.02)O10](OH)2. Thedata of EPMA testing tell that Xidan Stone samples have stable chemical composition. Samples mainly contain Si(64.88%) and Al(27.55%). Given that the Xidan Stone samples contain fewer Fe(0.02%) but more Cr(0.2%), Fe as well as Crmightcause the light yellow of stream-egg stones.

Keyword: Xidan Stone; Pyrophyllite; FTIR spectra; Raman spectra; Fujian shoushan
引 言

寿山石是中国著名的图章石之一, 产自福建省福州市北郊寿山乡寿山村。 寿山石质地莹润、 色彩斑斓, 享有六德之誉, 深受国内外鉴赏家喜爱。 寿山石品种繁多, 按其矿物组成分类为地开石类、 叶蜡石类及伊利石类, 按其成因可分为原生和次生两种类型[2]。 次生类型的寿山石品种较少, 除了石帝“ 田黄” 外, 还有牛蛋石和溪蛋石。 田黄有地开石型、 珍珠陶石型和伊利石型, 其颜色成因、 形成机理以及鉴别方法也已展开了较多的研究[5, 6, 8]。 牛蛋石不同部位的主要成分均为叶蜡石, 以单斜与三斜多型形式共存, 黄色和黑色牛蛋石均以Fe3+为致色元素[4]。 寿山溪蛋石质地温润, 作为寿山石中极具观赏性的品种之一, 却缺乏宝石学及矿物学方面的研究。 本文将针对产自寿山村寿山溪地区的溪蛋石, 运用X射线衍射(XRD)、 红外光谱(FTIR)、 拉曼光谱(LRM)及电子探针(EPMA)等分析仪器对其矿物组成、 谱学特征、 化学成分进行研究, 有助于补充、 丰富我国图章石的研究。

1 实验部分

分别对四块溪蛋石样品进行了测试研究。 其中, X射线粉晶衍射实验测试仪器为X’ Pert PRO型衍射仪, 测试电压40 kV, 电流40 mA, CuKα 1靶, 扫描步长0.017 0° , 测量范围为3° ~65° 。 红外光谱测试采用Nicolet 550型傅里叶变换红外光谱仪, 实验采用KBr压片法, 透射法, 分辨率为8 cm-1, 扫描范围为400~4 000 cm-1, 扫描次数为32。 拉曼光谱测试仪器为BRUKER SENTERRA 型显微激光拉曼光谱仪, 激发光源波长为532 nm, 扫描时间3 s, 叠加10次, 波数分辨率为3~5 cm.1, 波长范围为45~4 000 cm-1, 光斑为50× 1 000 μ m2。 以上实验均在中国地质大学(武汉)完成。 电子探针测试采用型号为JXA-8100的测试仪器, 样品薄片经过喷碳处理, 测试电压为20 kV, 测试电流为20 nm, 束斑为5 μ m。 电子探针测试在国家海洋局海底科学重点实验室完成。

2 结果与讨论
2.1 宝石学常规测试

寿山溪蛋石样品为浅黄色-黄色, 致密块状, 不透明-微透明, 具蜡状光泽, 磨圆度较好(图1)。 样品表面均见浅黄色的干涩粗糙风化皮, 风化皮较薄, 所有样品均可被小刀划动, 硬度小于3。 通过静水称重的方法测定4块样品的相对密度, 平均值为2.82 g· cm-3。 放大观察可见溪蛋石中存在极微小的点片状暗红色或褐红色包体及灰白色矿物(图2)。

图1 寿山溪蛋石外观特征Fig.1 Appearance of Xidan stone samples from Shoushan

图2 寿山溪蛋石中暗色矿物包体及灰白色矿物Fig.2 Inclusions in Xidan stone samples from Shoushan

2.2 矿物成分测试分析

2.2.1 X射线粉晶衍射分析

叶蜡石具有单斜(2M型)和三斜(1Tc型)两种多型, 由XRD衍射图谱特征可以将两者区分开来[1]。 结合PDF卡片46-1308(2M)和75-0856(1Tc)和XRD谱图(见图3), 可知样品(S-XD-01)为单斜晶系(2M型)叶蜡石, 其中在( 1¯12)衍射峰(2θ =21.06° )右侧出现了一个衍射肩, 是由于( 1¯12)和(111)两个衍射峰相距太近且强度相当导致的; 在28° ~31° 之间仅存在(003)衍射峰(2θ =29.05° )。 因样品珍贵稀少, XRD为破坏性实验且侧压法对粉末样品用量较多, 故仅选取代表样品进行实验, 获取更多样品时将继续测试。

图3 寿山溪蛋石代表性样品的XRD衍射图Fig.3 Typical XRD pattern of Xidan stone from Shoushan

2.2.2 红外光谱测试

溪蛋石样品风化皮和基体各部分的红外光谱显示均为叶蜡石[图4(a, b)], 指纹区的主要特征峰为1 122, 1 068, 1 052, 949, 853, 835, 812, 541和484 cm-1, 官能团区以3 675 cm-1处出现尖锐的吸收峰为特征。

图4 寿山溪蛋石样品的红外光谱
(a): 溪蛋石S-XD-1和S-XD-2样品石皮与基质的红外光谱; (b): 溪蛋石S-XD-3和S-XD-4样品石皮与基质的红外光谱
Fig.4 IR spectra of Xidan stone from Shoushan
(a): FTIR spectra of weathering skin parts and substrate parts of S-XD-1 and S-XD-2; (b): FTIR spectra of weathering skin parts and substrate parts of S-XD-3 and S-XD-4

2.2.3 拉曼光谱测试

溪蛋石为隐晶质矿物集合体, 结晶颗粒细小[2], 拉曼光谱测试时荧光效应较强(图5)。 结果表明, 溪蛋石的基质部分为叶蜡石[见图5(a, b)]; 点片状黑色包裹体为赤铁矿, 其特征拉曼峰出现在261, 706, 901和3 671 cm-1处; 灰白色矿物为硬水铝石[见图5(c)], 其特征峰位于448, 499和667 cm-1等, 点片状黑色包裹体为赤铁矿[见图5(d)]。

图5 寿山溪蛋石基质部分与杂质矿物的拉曼光谱
(a): 溪蛋石基质部分0~1 000 cm-1范围拉曼光谱(叶腊石); (b): 溪蛋石基质部分3 000~4 000 cm-1范围拉曼光谱(叶腊石); (c): 溪蛋石中硬水铝石的拉曼光谱; (d): 溪蛋石中赤铁矿的拉曼光谱
Fig.5 Raman spectra of Xidan stone from Shoushan
(a): Raman spectrum of substrate part of Xidan stone in 0~1 000 cm-1; (b): Raman spectrum of substrate part of Xidan stone in 3 000~4 000 cm-1; (c): Raman spectrum of diaspore in Xidan stone; (d): Raman spectrum of hematite in Xidan stone

2.3 化学成分测试

采用电子探针对样品进行成分测试, 分别选取样品S-XD-02和S-XD-03中四个点测试, 取其平均值(表1)。 叶蜡石的晶体结构化学式以11个氧原子计, 计算得溪蛋石的平均晶体结构化学式为: (Al1.98Na0.02Cr0.01)[(Si3.98Al0.02)O10](OH)2

表1 寿山溪蛋石的化学成分 Table 1 The chemical component of Xidan stone from Shoushan (Wt%)

寿山溪蛋石呈浅褐黄色, 与寿山牛蛋石相比颜色均匀, 色调浅。 牛蛋石含有约0.4% Fe3+和约0.1% Fe2+, 不含Cr, 其颜色为Fe3+形成[4, 6, 8]。 而寿山溪蛋石中Cr元素含量远大于Fe元素, 因此推测是Cr, Fe离子的共同作用使寿山溪蛋石浅褐黄色。 溪蛋石的颜色成因将在后续工作中继续深入探究。

3 结 论

从矿物组成、 谱学特征和化学成分等方面对寿山溪蛋石展开了全面的测试分析, 并初步探讨了其颜色成因。 XRD测试结果表明, 寿山溪蛋石由纯度很高的叶蜡石组成, 并以单斜2M型叶蜡石存在。 样品的红外光谱显示, 溪蛋石的风化石皮与基质部分矿物组成均为叶蜡石, 指纹区的特征峰为1 122, 1 068, 1 052, 949, 853, 835, 812, 541和484 cm-1, 官能团区以3 675 cm-1处出现尖锐的吸收峰为特征[3, 7]; 采用显微激光拉曼光谱对溪蛋石中的包裹体的测试结果表明, 溪蛋石中点片状黑色包裹体为赤铁矿, 其特征拉曼峰出现在224, 291, 409, 494和1 315 cm-1处, 灰白色矿物为硬水铝石, 其特征峰位于448, 499和667 cm-1等; 根据电子探针测试数据计算溪蛋石的平均晶体结构化学式为: (Al1.98Na0.02Cr0.01)[(Si3.98Al0.02)O10](OH)2。 溪蛋石化学成分稳定, 主要组成元素为Si和Al。 溪蛋石样品中含约0.2%的Cr和约0.02%含量极少的Fe, Cr元素含量高于Fe, 推测是Cr离子和Fe离子共同作用使溪蛋石呈现浅黄色。

The authors have declared that no competing interests exist.

参考文献
[1] Wilson M J. Clay Mineralogy: Spectroscopic and Chemical Determicative Methods. Chapman & Hall, Oxford. 1994. [本文引用:1]
[2] ZHANG Bei-li(张蓓莉). Systematic Gemology(系统宝石学). Beijing: Geology Press(北京: 地质出版社), 1997. [本文引用:2]
[3] SUN Ni, CUI Wen-juan, XU Xiang(孙旎, 崔文元, 徐湘). Acta Petrologica et Mineralogic(岩石矿物学杂志), 2003, 22(3): 273. [本文引用:1]
[4] CHEN Tao(陈涛). Journal of Gems and Gemology(宝石和宝石学杂志), 2008, 10(2): 1. [本文引用:2]
[5] CHEN Tao, YAO Chun-mao, QI Li-jian(陈涛, 姚春茂, 亓利剑). Journal of Gems and Gemology(宝石和宝石学杂志), 2009, 11(3): 1. [本文引用:1]
[6] LIU Yun-gui, CHEN Tao(刘云贵, 陈涛). Acta Petrologica et Mineralogic(岩石矿物学杂志), 2013, 32(4): 549. [本文引用:2]
[7] HUANG Zhi-ming, TANG De-ping, LIN Hui(黄志明, 汤德平, 林辉). Journal of Gems and Gemology(宝石和宝石学杂志), 2014, 16(5): 34. [本文引用:1]
[8] XU Wen-jing, CHEN Tao, YAO Chun-mao(徐文静, 陈涛, 姚春茂). Acta Petrologica et Mineralogic(岩石矿物学杂志), 2016, 35(2): 321. [本文引用:2]