%A %T Classification and Discrimination of Martian-Related Minerals Using Spectral Fusion Methods %0 Journal Article %D 2018 %J SPECTROSCOPY AND SPECTRAL ANALYSIS %R 10.3964/j.issn.1000-0593(2018)06-1926-07 %P 1926-1932 %V 38 %N 06 %U {https://www.gpxygpfx.com/CN/abstract/article_9892.shtml} %8 2018-06-01 %X Multi-source data fusion is a powerful method to combine data from multiple sources to improve the potential values and interpretation performances of the source data. Multi-payload collaborative analysis is regularly used to detect the same target in planetary exploration. Therefore, it is of great significance and potential application to use spectral fusion to establish a more accurate and robust clustering analysis model for Martian minerals identification. In this paper, the spectral characteristics of the main Martian-related minerals were analyzed by using both visible near-infrared (Vis-NIR) reflectance spectroscopy and Raman spectroscopy. And some data pre-processing methods such as baseline correction, Savitzky-Golay smoothing, standard normal variate (SNV) scaling were used to produce a high-quality representation of the spectral data. Firstly, the information-rich spectral bands with higher signal-to-noise ratio and less overlapping were selected (i. e., Vis-NIR:430~2 430 nm; Raman:130~1 100 cm-1) for the clustering analysis. Secondly, soft independent method of class analogy (SIMCA) and principal component analysis-K-nearest neighbor (PCA-KNN), were respectively built based on selected Vis-NIR, Raman and two kinds of their fusion data(i. e., coaddition fusion and concatenation fusion), respectively. The accuracy of SIMCA model was enhanced from 72.6% (Vis-NIR) and 90.7% (Raman) to 96.3% (coaddition fusion) and 98. 1% (concatenation fusion). The accuracy of PCA-KNN model was improved from 68.9% (Vis-NIR) and 72.9% (Raman) to 80.3% (coaddition fusion) and 92.6% (concatenation fusion), respectively. The results indicate that the fused Raman/Vis-NIR data can improve the classification model’s accuracy of Martian-related minerals which will lay the foundation of quick rock classification for future Mars exploration.