%A SHEN Yun-xia;;ZHAO Yan-li;ZHANG Ji;JIN Hang;WANG Yuan-zhong* %T Study on Gentiana Rigescens with Silvomedicinal and Agriosivomedicinal Systems with FTIR Spectroscopy %0 Journal Article %D 2016 %J SPECTROSCOPY AND SPECTRAL ANALYSIS %R 10.3964/j.issn.1000-0593(2016)08-2468-06 %P 2468-2473 %V 36 %N 08 %U {https://www.gpxygpfx.com/CN/abstract/article_8576.shtml} %8 2016-08-01 %X Multiple cropping systems are the way to cope with the shortage of traditional Chinese medicine (TCM) resources and enhance the utilization ratio of land. The aim of this study was to investigate seventy Gentiana rigescens Franch samples which were planted in slope and in multiple cropping system mixed with Juglans regia, Alnus nepalensis, Eucalyptus robusta, Alnus nepalensis, Camellia sinensis, Chaenomeles sinensis using Fourier transform infrared (FTIR) spectroscopy. The pretreatments such as baseline correction, normalization and second derivative of all the original spectra were performed with Omnic 8.0 software. Moreover, second derivative spectra of samples and gentiopicroside standard were analyzed. In addition, two spectral databases were set up based on the average spectra of every variety with Omnic 8.0 software. The first library (Lib1) which included the spectra region from 1 800 to 600 cm-1 had the algorithm of expert retrieve while the correlation retrieve and square differential retrieve were dealt with the second library (Lib2) in the full spectral range. The results indicated that it is difficult to identify the infrared spectra of samples directly because they had high similarities. There were multiple common peaks between spectra of samples and gentiopicroside standards. The absorption peaks of 1 611 and 1 076 cm-1 of gentiopicroside were the two main characteristic peaks in the second derivative spectra. The difference of peak shape of every sample in the wave number of 1 076 cm-1 was small. By comparing peak area at 1 611 cm-1, the samples planted with J. regia contained highest content of gentiopicroside while the content of this effective constituent was the lowest in the samples which were planted in the slope and in the multiple cropping systems mixed with C sinensis. The differences of effective components in the samples with different planting patterns were represented by the variances of spectral matching values. The difference of matching values of samples planted with J. regia, A. nepalensis, E. Robusta and A. nepalensis were lower than that with slope and C. Sinensis. The number of misjudgment of expert retrieval, correlation retrieve and square differential retrieve were 11, 4 and 9, respectively. The discrimination result of correlation retrieve was the best in the full spectral range and the correct recognition rate was 94.29%. Fourier transforms infrared (FTIR) spectroscopy combined with second derivative and retrieval had good ability to discriminate G. rigescens with different cropping systems. It could provide a basis for the discrimination of different planting patterns of TCM