%A HE Qiu-ju;;WANG Li-qin* %T Research Progress of Raman Spectroscopy on Dyestuff Identification of Ancient Relics and Artifacts %0 Journal Article %D 2016 %J SPECTROSCOPY AND SPECTRAL ANALYSIS %R 10.3964/j.issn.1000-0593(2016)02-0401-07 %P 401-407 %V 36 %N 02 %U {https://www.gpxygpfx.com/CN/abstract/article_8199.shtml} %8 2016-02-01 %X As the birthplace of Silk Road, China has a long dyeing history. The valuable information about the production time,the source of dyeing material,dyeing process and preservation status were existed in organic dyestuff deriving from cultural relics and artifacts. However,because of the low contents,complex compositions and easily degraded of dyestuff,it is always a challenging task to identify the dyestuff in relics analyzing field. As a finger-print spectrum,Raman spectroscopy owns unique superiorities in dyestuff identification. Thus,the principle,characteristic,limitation,progress and development direction of micro-Raman spectroscopy (MRS/μ-Raman),near infrared reflection and Fourier transform Raman spectroscopy (NIR-FT-Raman), surface-enhanced Raman spectroscopy (SERS) and resonance raman spectroscopy (RRS) have been introduced in this paper. Furthermore, the features of Raman spectra of gardenia,curcumin and other natural dyestuffs were classified by MRS technology, and then the fluorescence phenomena of purpurin excitated with different wavelength laser was compared and analyzed. At last, gray green silver colloidal particles were made as the base,then the colorant of madder was identified combining with thin layer chromatography (TLC) separation technology and SERS,the result showed that the surface enhancement effect of silver colloidal particles could significantly reduce fluorescence background of the Raman spectra. It is pointed out that Raman spectroscopy is a rapid and convenient molecular structure qualitative methodology,which has broad application prospect in dyestuff analysis of cultural relics and artifacts. We propose that the combination of multi-Raman spectroscopy, separation technology and long distance transmission technology are the development trends of Raman spectroscopy.