%A WU Yong-feng;HU Xin;Lü Guo-hua;REN De-chao;JIANG Wei-guo;SONG Ji-qing* %T Comparison of Red Edge Parameters of Winter Wheat Canopy under Late Frost Stress %0 Journal Article %D 2014 %J SPECTROSCOPY AND SPECTRAL ANALYSIS %R 10.3964/j.issn.1000-0593(2014)08-2190-06 %P 2190-2195 %V 34 %N 08 %U {https://www.gpxygpfx.com/CN/abstract/article_7195.shtml} %8 2014-08-01 %X In the present study, late frost experiments were implemented under a range of subfreezing temperatures (-1~-9 ℃) by using a field movable climate chamber (FMCC) and a cold climate chamber, respectively. Based on the spectra of winter wheat canopy measured at noon on the first day after the frost experiments, red edge parameters REP, Dr, SDr, Drmin, Dr/Drmin and Dr/SDr were extracted using maximum first derivative spectrum method (FD), linear four-point interpolation method (FPI), polynomial fitting method (POLY), inverted Gaussian fitting method (IG) and linear extrapolation technique (LE), respectively. The capacity of the red edge parameters to detect late frost stress was explicated from the aspects of the early, sensitivity and stability through correlation analysis, linear regression modeling and fluctuation analysis. The result indicates that except for REP calculated from FPI and IG method in Experiment 1, REP from the other methods was correlated with frost temperatures (P<0.05). Thereinto, significant levels (P) of POLY and LE methods all reached 0.01. Except for POLY method in Experiment 2, Dr/SDr from the other methods were all significantly correlated with frost temperatures (P<0.01). REP showed a trend to shift to short-wave band with decreasing temperatures. The lower the temperature, the more obvious the trend is. Of all the REP, REP calculated by LE method had the highest correlation with frost temperatures which indicated that LE method is the best for REP extraction. In Experiment 1 and 2, only Drmin and Dr/Drmin calculated by FD method simultaneously achieved the requirements for the early (their correlations with frost temperatures showed a significant level P<0.01), sensitivity (absolute value of the slope of fluctuation coefficient is greater than 2.0) and stability (their correlations with frost temperatures always keep a consistent direction). Dr/SDr calculated from FD and IG methods always had a low sensitivity in Experiment 2. In Experiment 1, the sensitivity of Dr/SDr from FD was moderate and IG was high. REP calculated from LE method had a lowest sensitivity in the two experiments. Totally, Drmin and Dr/Drmin calculated by FD method have the strongest detection capacity for frost temperature, which will be helpful to conducting the research on early diagnosis of late frost injury to winter wheat.